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SLMMARY 

The work presented in this report describes the initial phase of investi-, 

gations designed to help establish the degradation mechanisms and radiation 

effects in graphite composite materials resulting from electron or ultraviolet 

irradiation. The ultimate objective of these investigations is to predict the 

long term durability in a space environment of the graphite composite materials. 

Investigations were also conducted in the application, physical durability and 

initial optical properties of conventional thermal control coatings on a 

variety of composite substrates. Good adhesion of S13G/LO on the composite 

substrates was achieved by the utilization of y-amino-propyltriethoxysilane 

as the primer. The degradation mechanisms have been investigated for graphite/ 

polysulfone and graphite/epoxy laminates exposed to ultraviolet and high- 

energy electron radiations in vacuum up to 960 equivalent sun hours and 10' 

rads respectively. Based on GC and combined GC/MS analysis of volatile by- 

products evolved during irradiation, several free radical mechanisms of 

composite degradation have been identified. The radiation resistance of 

different matrices has been compared in terms of G values and quantum yields 

for gas formation. All the composite materials evaluated have shown high 

electron radiation stability and relatively low ultraviolet stability as 

indicated by low G values and high quantum yields for gas formation. Mechanical 

property measurements of irradiated samples did not reveal significant changes, 

with the possible exception of UV exposed polysulfone laminates. Hydrogen 

and methane have been identified as the main by-products of irradiation, 

along with unexpectedly high levels of CO and COP. Initial G values for 

methane relative to hydrogen formation are higher in the presence of isopro- 

pylidene linkages, which occur in bisphenol-A based resins. 



1. INTRODUCTION 

This report entitled "Investigation of Degradation Mechanisms in Composite 

Matrices" was prepared by IIT Research Institute for NASA - Langley Research 

Center under contract No. NASl-15469. The program was conducted under the 

direction of W.S. Slemp, the NASA-Langley Project Monitor. Work on this pro- 

gram was conducted at IIT Research Institute, Chicago, Ill., under the direction 

of C. Giori with the assistance of 3. Brzuskiewicz (coating studies), 

T. Yamauchi and S. Shelf0 (UV exposure testing), R. Butler (GC analysis), 

S. Gordon (GC/MS analysis) and K. Hofer (composite fabrication and mechanical 

testing). Electron irradiation tests have been conducted by IRT Corp., 

San Diego, Ca., under the direction of J. Wilkenfeld. 

Composite materials offer substantial advantages over conventional metallic 

materials for large space system applications due to their superior strength 

and stiffness-to-weight ratios and their low coefficient of thermal expansion. 

The major problem in utilizing composites for satellite structural applications 

is the degradation of material properties under the effect of the vacuum- 

radiation environment of space. Long-term stability at geosynchronous orbit 

is of primary concern. The use of composite materials for large geostationary 

structures presents a number of uncertainties because of the lack of informa- 

tion on the effects of thermal cycling, high vacuum and space radiation. 

Spacecraft in synchronous earth orbit are periodically eclipsed from the sun 

by the earth. This may produce a significant thermal shock effect on the 

composite. Vacuum may cause outgassing and migration of low molecular weight 

components from the matrix material. Another critical problem is the degra- 

dation of the composite matrix under the effect of radiation. This problem 

is particularly complex because of the nature of the geosynchronous radiation 

environment and the requirement for stability to ultraviolet as well as high 

energy radiations. Protection against heat and ultraviolet radiation may be 

afforded by the use of thermal control coatings. Such coatings, however, add 

undesired weight to the composite structure and do not provide protection 

against penetrating radiations such as high energy electrons. 

2 



An understanding of the radiation behavior of composite materials is 

required in order to predict their long-term durability in a space environment. 

It is particularly important to develop reliable correlations capable of pre- 

dicting the extent of degradation for 10 to 30 years missions on the basis of 

short-term laboratory tests. A kinetic analysis of the degradation process is 

necessary for predicting the long-term behavior based on short-term exposure 

data, as well as for correlating accelerated exposure data with real time 

material performance. 

The main objective of this study is to establish the mechanisms of degra- 

dation and predict the long-term durability of graphite reinforced composites, 

including epoxies and polysulfone matrix materials. A secondary objective is 

to establish the feasibility of using thermal control coatings for ultraviolet 

protection of composite substrates. 

Certain commercial materials and products are identified in this paper 

in order to specify adequately which materials and products were investigated 

in the research effort. In no case does such identification imply recommen- 

dation or endorsement of the product by NASA, nor does it imply that the 

materials and products are necessarily the only ones or the best ones available 

for the purpose. In many cases equivalent materials and products are available 

and could produce equivalent results. 

2. MATRIX RESINS EVALUATED 

A study of the mechanisms of radiation damage requires a detailed know- 

ledge of the chemical structure of the matrix resins under evaluation. Unfortu- 

nately, the chemical composition of many resins potentially of interest for 

this study has not been disclosed by the manufacturers. The resins of primary 

interest for this study are 1) polysulfones. and 2) epoxy resins of high 

functionality based on the tetraglycidyl derivative of methylenedianiline. 

The composition of these resins will be reviewed on the basis of information 

available from the literature or obtained by analysis of samples provided by 

the manufacturers. 
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2.1 POLYSULFONES 

Polysulfones are a class of high temperature thermoplastic polymers 

currently available from various commercial sources. Available polysulfones 

are listed in Table 1. "Udel" P1700 (Union Carbide) is the most widely used 

of sulfone polymers: 

-o@- 

3 

0 0 -0 O- 

It is obtained by the condensation of bisphenol-A with 4,4'-dichlorodiphenyl- 

sulfone. The polymerization involves a nucleophilic displacement reaction. 

This is made possible by the presence of the sulfone group which is strongly 

electron attractive and facilitates the displacement of chlorine atoms by 

the hydroxyl groups of a bisphenol-A. 

The second polysulfone was introduced by 3M and later licensed to 

Carborundum. It is known as "polyarylsulfone": 

@+~Q& 
0 0 

It is synthesized by a Friedel-Crafts reaction of the disulfonylchloride of 

diphenylether with biphenyl. It has excellent thermal stability because of 

the absence of aliphatic groups and the inherent stability of the ether and 

sulfone bridges. 

A third sulfone polymer, introduced by ICI as "polyethersulfone", has 

the following structure: 
0 



TABLE 1 

SULFONE POLYMERS 

0 

aiQo- 
0 

UNDISCLOSED 

Union Carbide 
"Polysulfone" ("Udel", ~Pl700") 

3M/Carborundum 
"Polyarylsulfone" ("Astrel") 
(Discontinued) 

ICI 
"Polyethersulfone" 

Union Carbide 
"Polyphenylsulfone" ("Radel") 

More recently, a fourth sulfone polymer has been introduced by Union Carbide 

which is more thermally stable than "Udel." The structure has not been 

disclosed. The polymer is known as "Radel" or "polyphenylsulfone". 

Our study is primarily concerned with the radiation behavior of bis- 

phenol-A polysulfone ("Udel"). Among the sulfone polymers, "Udel" has shown 

the greatest potential as composite matrix resin. 

2.2 EPOXY RESINS 

The epoxies of interest for this study are high temperature resins 

based on the tetraglycidyl derivative of methylenedianiline, available from 

Ciba-Geigy under the trade name MY720: 
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The high functionality of this resin results in a high degree of crosslinking 

and high heat distortion temperature of the cured product. 

The hardener utilized in conjunction with MY720 is 4,4'diaminodiphenyl- 

sulfone (DDS): 

Two epoxy resins based on MY720 and DDS are being evaluated: Fiberite 934 

and Narmco 4208. We have conducted a brief analytical study of two batches 

of Fiberite 934 and Narmco 5208 (neat resins). The following is a summary 

of our findings: 

a. Atomic Absorption Analysis 

Boron has been identified in Fiberite 934. Boron trifluoride is used 

as cocatalyst in Fiberite 934, probably as a complex with e 

was not detected in Narmco 5208. 

b. Elemental Analysis 

The results obtained for the two resins are quite simi 

thylamine. Boron 

lar and consistent 

with structures based primarily on MY720 resin and DDS hardener: 

ELEMENTAL ANALYSIS OF RESINS 

C H N S Cl Br P - - - - -- 

Fiberite 934 67.48 6.50 7.11 3.00 67.64 6.62 7.19 3.01 o ' 6 0.16 0.05 

Narmco 5208 64.83 6.21 7.14 4.18 64.55 6.20 7.09 4.17 0.47 0.21 0.05 



c. Infrared Analysis 

The structural similarity of the two resins is confirmed by their infrared 

spectra (Figures 1 and 2). The main difference observed is a 5.85 1-1 band in 

Fiberite 934 indicative of the presence of carbonyl groups. Carbonyl groups 

are not believed to be part of the resin structure but are probably due to the 

presence of acetone or methylethylketone. 

d. NMR Analysis 

NMR spectra are shown in Figure 3 and 4. Two sets of aromatic protons 

coupled in a classic AB pattern are observed in each of the NMR spectra. 

One group which is approximately l/2 to l/3 the amount of the other occurs 

at 6.65 and 7.5 ppm. These two aromatic protons are indicative of protons 

adjacent to two distinctly different functionalities as might be present in 

DDS. The second set of aromatic protons located at 6.75 and 7.0 ppm's occur 

in similar magnetic environments as would be found in MY720 resin. The peak 

at 5.9 ppm is most likely due to the -NH2 group of DDS. One -CH2- group is 

centered at 2.6 ppm while the other is centered at 3.25 ppm. The -CH- group 

may be hidden under the aromatic region as it would be expected to be a 

pentet with low intensity. 

No evidence of -CH3 groups is observed in Fiberite 934. A small amount 

of -CH3 groups are present in the Narmco 5208 sample, indicating the presence 

of minor quantities of a -Bisphenol -A based resin. 
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3. COATING STUDIES 

3.1 IITRI THERMAL CONTROL COATING S13G/LO 

3.7.7. Adkkon Stud.ien 

Commercially available silane-type primers have been evaluated as adhe- 

sion promoters between the graphite reinforced composite and the silicone- 

based coating (S13G/LO). 

Initial work was carried out utilizing Narmco 5208/T300 composite as the 

substrate. Four primers listed in Table 2 were applied to the substrate by 

means of a wipe procedure. 

TABLE 2 

SILANE TYPE PRIMERS 

Trade Name Composition Manufacturer 

Chemlock AP 133 Undisclosed Hughson Chemicals, Lord Corp. 

ss4044 Undisclosed General Electric 

A40g4 Undisclosed Dow Corning Corp. 

All00 Silane y-aminopropyltriethoxysilane Union Carbide 

* No longer available commercially 

Primer coated strips were allowed to air dry for l/2 hour and were then spray 

coated with S13G/LO (4-6 mil dry film thickness). A control sample (no 

primer) was also coated for comparative purposes. The coated samples were 

allowed to cure at room temperature for a period of 48 hours, after which 

time they were immersed in liquid nitrogen and held until temperature equili- 

brium was attained (boiling subsided). The samples were then removed from 

the liquid nitrogen and brought to room temperature. They were then visually 

examined for signs of coating lifting or delamination. None of the samples 

failed the immersion test. A cut was therefore made through the coating to 

the substrate by means of a sharp scalpel and attempts were made to lift the 

coating by inserting the blade in the cut and turning the blade parallel to 

the substrate. 
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Sufficient samples were prepared to evaluate coating adhesion after 

curing periods of 48 hours and 144 hours. The results obtained are shown 

in Table 3. 

Adhesion of the coating to the primed substrates was cure-time dependent. 

Samples prepared with All00 silane primer, however, exhibited superior pro- 

perties as compared to the others. 

3.1.2. Ed&d 06 Suhbace PhcqmuZion 

The effect of composite surface preparation (abraded and non-abraded) 

on the adhesion of S13G/LO coatings has been determined. One set of test 

specimens was prepared by wiping the surface of the composites with a gauze 

pad saturated with X-99 solvent (X-99 solvent is the thinner for SlSG/LO 

paint). Another set of test specimens was abraded with No. 240 grit Alopite 

cloth and the abraded surface was then wiped with X-99 solvent. 

The composite test strips were then wipe primed with a 1:5 ratio (by 

volume) of A-1100 Silane Primer - X-99 solvent. After air drying for l/2 

hour the primed strips were spray coated with S13G/LO (Batch No. E-497) and 

allowed to cure at room temperature. 

After curing, the coated strips were thermal-shock-tested by immersion 

in liquid nitrogen and further checked for coating adhesion by means of the 

"Knife Adhesion Test." The results obtained are shown in Table 4. 

Abrading the surface of the composite materials did not appear to enhance 

coating adhesion to a marked degree. As a consequence, larger samples sub- 

mitted to NASA Langley for evaluation were prepared by solvent-wiping of the 

surfaces only. 

Samples were prepared for determining the effect of coating thickness 

on solar absorptance (cY~). The solar ;absorptancewas determined by integra- 

tion of the normal-hemispherical reflectance spectra in the spectral range 

325-2600 nm with the solar air-mass-zero spectrum. The values obtained on 

non-abraded specimens are shown in Table 5. The data indicates that the 

solar absorptance is coating-thickness-dependent. 
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Primer 

None 

Cheinlock AP133 

ss4044 

A4094 

All00 Silane 

TABLE 3 

LIQUID NITROGEN ADHESION TEST 

Cure 
Time 

48 

144 

48 

144 

48 

144 

48 

144 

48 

144 

Comments 

Poor adhesion, coating peels 
away from substrate. 

Same as above. 

Slight degree of adhesion, coating 
can be peeled from substrate. 

Fair adhesion. 

Slight degree of adhesion 

Fair to good adhesion. Lifting 
of coating results in coating 
residue being left on substrate. 

Fair adhesion. 

Fair to good adhesion. 

Good adhesion. Coating residue 
remained on substrate. 

Excellent adhesion. Cannot lift 
coating. 
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TABLE 4 

S13G/LO COATING STUDIES. A-1100 SILANE PRIMER 

Liquid Knife Test 
264 hr. 

Substrate * Thic$~~"~mm) ~~~roh?nc~~~~ '~u!~' cure 

5208/T300 a) 0.1:s Pass Good Good 
b) 0.20 Pass Good Good 

3501 WAS 3 
0.20 Pass Good Good 
0.18 Pass Good Good 

Pl700/ a) 0.20 Pass Fair Fair 
Celion 6000 b) 0.25 Pass Fair Fair 

PMR-151 a> 0.15 Pass Good Good 
Celion 6000 b) 0.18 Pass Good Good 

* a) Abraded surface. 
b) Non-abraded scrface. 
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TABLE 5 

OPTICAL PROPERTIES OF Sl3G/LO (E-497) ON COMPOSITE SUBSTRATES PRIMED WITH A-1100 SILANE 

Substrate 

5208/T300 

Thickness (mm) Solar Absorptance (aq) Emittance (E) (ilg& 

0.08 0.28 0.90 0.31 
0.13 0.24 0.90 0.27 
0.13 C.23 0.90 0.26 
0.30 Specimen broke 

3501-6/AS 0.08 0.29 0.90 0.32 
0.11 0.24 0.90 0.27 
0.13 0.22 0.90 0.24 
0.25 0.18 0.90 0.20 

P1700/Celion 6000 0.08 0.29 0.90 0.32 
0.13 0.24 0.90 0.27 
0.13 0.22 0.90 0.24 
0.28 0.20 0.90 0.22 

PMR15/Celion 6000 0.05 0.29 0.90 0.32 
0..13 0.25 0.90 0.28 
0.13 0.22 0.90 0.24 
0.23 0.19 0.90 0.21 



3.1.4. Pe&! S&eng~th TebA;ing 

In an effort to evaluate coating adhesion on a quantitative basis, samples 

were prepared for a 180' peel test. 25 x 150 mm strips of 5208/T300 com- 

posite were primed with the various primers and then top-coated with Sl3G/LO. 

Before the top coat could dry, strips of cotton cheesecloth were embedded in 

the coating in such a manner that 20 sq. cm. of the cloth was embedded and a 

length of the cloth was left free as a pull or peel tab. After curing 120 

hours the peel test samples were placed in an Instron Testing Machine, and a 

180' peel test was carried out. Peeling was carried out at a rate of 13 mm/min. 

The results are shown in Table 6. 

Preparation of uniform peel test specimens presented a problem in that 

during the embedment of cloth strips into the coating layer the coating thickness 

between the substrate and the cloth could not be controlled. Thus the peel 

strength (which is thickness-dependent) varies. At this stage it appears 

that the liquid nitrogen/lifting test provided a better indication of coating 

adhesion. 

3.2 IITRI THEWlAL CONTROL COATING Z-93 

5208/T300, 350l/AS and P1700/Celion 6000 composite samples were coated 

with Z-93 (2-3 mil thickness). The surface of the composite was abraded 

slightly to expose clean matrix material. The surface was then rub-primed 

with the Z-93 and subsequently top coated by spraying. Two top coats were 

required to effectively hide the substrate. After air drying for 48 hours, 

the samples passed the liquid nitrogen immersion test, but exhibited some 

lifting during the knife cut through test. 

3.3 PREPARATION OF SAMPLES FUR LARC EVALUATION 

3.3.1. SISG/ LO Co&g Compob&% 

Coated samples prepared for NASA-Langley evaluation were 50 mm wide 

strips cut from composite sheets. They were wipe primed with 1:5 ratio 

of X-1100 Silane in X-99. The primer coating was allowed to air-dry for 

l/2 hour and then the strips were spray coated with Sl3G/LO (Batch No. E-497). 

The coated samples are described in Table 7. 
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Table 6 

180' PEEL TEST 
SUBSTRATE 5208/T300-Sl3G/LO COATING 

Primer Comments 

None Poor, peels cleanly from substrate 0.05 
kg/cm width 

Chemlock APl33 Cohesive strength of coating lower than 
adhesive strength to substrate. 
Cloth strip pulls out of coating, 0.49 kg/cm 
width. 

ss4044 Poor, peels cleanly from substrate, 0.18 kg/cm 
width. 

A4094 Cohesive strength of coating lower than 
adhesive strength to substrate 
Cloth strip pulls out of coating, 0.54 kg/cm 
width. 

All00 Silane Same results as with Chemlock AP133 and 
A4094, 0.58 kg/cm width. 
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Table 7 

Sl3G/LO (E-497) COATED COMPOSITES FOR LARC EVALUATION 

Substrate Averaqe Coating Thickness (mm) 
5208/T300 0.25 

3501-6/AS 0.23 

PMR 15/Celion 6000 0.20 

Pl700/Celion 6000 0.23 

3.3.2. Zinc OtiCzo.7Zanate - RTV602/LO Cotid Compostiti 

Sample strips of three composite materials (P1700/Celion 6000, 3501- 

6/AS and 5208/T300) were coated with a zinc orthotitanate - silicone paint 

formulation (IITRI Batch No. E548). The composite materials were solvent 

washed (X-99 thinner), air dried for l/2 hour, and then wipe primed with 

a 1:5 ratio by volume of A-1100 Silane to X-99 thinner. The primed strips 

were air dried for 1 hour and then spray coated with E-548. At the same 

time aluminum discs were coated and subsequently used for optical measure- 

ments. After curing for 24 hours, coating thickness measurements were made 

at ten (10) locations on each strip and the average calculated. Substrate 

description and average coating thickness are shown in Table 8. 

Table 8 

RTV602/LO - ZINC ORTHOTITANATE (~-548) COATED 
COMPOSITES FOR LARC EVALUATION 

Substrate 

5208/T300 

3501-6/AS 

Pl700/Celion 6000 

Average Coatinq Thickness (mm) 

0.20 

0.15 

Substrate too irregular to get 
true reading 

The paint was compounded from RTV602/LO (Batch No. E-538) and Zinc 

Orthotitanate (Batch No. 1112) to give a pigment-binder ratio (PBR) of 3:l. 

The solar absorptance (cxs) of owl8 mm thick films (on aluminum sub- 

strates) in the spectral range 325-2600 nm (solar-air-mass-zero) was 0.16. 

The emittance was 0.88. 
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4. COMPOSITE DEGRADATION STUDIES 

4.1 EXPERIMENTAL 

Preliminary exposure tests (UV only) have been conducted on Fiberite 

705/60. Samples of Fiberite 705/60 laminates were provided by NASA- Langley. 

The matrix resin used in 705/60 is P1700 polysulfone, and the fibers employed 

are graphite T300 and glass (94 and 6 percent respectively). 

Ultraviolet and high-energy electron exposure tests have been conducted 

on 4-ply, undirectional graphite laminates of polysulfone Pl7OO/C6000 and 

two epoxy systems: Fiberite 934/T300 and Narmco 5208/T300. Fiber volume 

contents of the laminates tested have been determined using Archimedes 

principle and assuming zero void content (Table 9). The % resin by weight 

are given in the same Table. Elemental analysis results (inclusive of the 

graphite in the composite) are given in Table 10. For comparison, the 

elemental analysis of clear, extruded Pl700 sheet gave: 

percent found: C = 72.2; H = 4.93; N = 0.15; S = 6.68; P = 0.007 

percent Cal.: C = 73.3; H = 5.01; S = 7.24 

Table 9 

FIBER/RESIN CONTENT OF GRAPHITE LAMINATES 

Material Resin Density 
Fiber Density 
graphite glass %-Vol Fiber %-Wt Resin 

705/60 1.3 1.75 2.54 61.2 31.5 
Pl7OO/C6000 1.3 1.76 -- 47.9 44.5 
934/T300 1.3 1.75 -- 47.5 45.1 
5208/T300 1.3 1.75 -- 60.3 32.8 
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Table YO 

ELEMENTAL ANALYSIS OF GRAPHITE LAMINATES* 

Material C H N S P Cl 

%5/60 
- - - -- - 
81.6 2.1 3.6 2.8 1.3 0.08 

Pl7OO/C6000 88.6 1.7 3.5 2.1 0.07 0.14 

934/T300 76.1 3.0 7.1 1.8 -- 0.2 

5208/T300 84.8 1.7 7.4 0.86 0.04 0.24 

Br F -- 
mm mm 

-- 0.1 
-- 0.22 
-- 0.20 

*Inclusive of the graphite present in the composites. 

Samples of P17OO/C6000 and Fiberite 934/T300 were provided by NASA - Langley. 

Narmco 5208/T300 laminates were prepared at IITRI according to the procedure 

given in the following section. 

4.1.2. Fabtition 04 T30PINanmco 5208 Laminaten 

A 4-ply, undirectional T300/Narmco 5208 laminate was fabricated using an 

autoclave to provide the pressure and temperature cycle required. 

The autoclave, with internal dimensions of 1.6 meters in length and 0:5 meters 

diameter allows the fabrication of either one large plate or several smaller 

plates simultaneously. The movement of the aluminum heating plate into and out 

of the autoclave is facilitated by a trolley. The autoclave itself is perma- 

nently mounted on a steel frame. The heat cycle (maximum capacity 288'C) is 

automatically controlled. There is provision for two separate vacuum systems 

that may be used at the same time for fabricating two plates simultaneously. 

Air pressure to 7 kg/sq cm is obtained directly from an air line in the 

fabrication laboratory. 

The preliminary layup procedures were developed specifically for the auto- 

clave process. The tape is cut to the required length using a conventional 

paper cutter and is stacked in the appropriate layer orientations. After all 

plies are stacked the plate is ready for cure. 

A stainless steel caul plate, approximately 76mm longer and wider 

than the laminate, was used during the curing process. A sheet of TX-1040 

separator sheet of the same size as the laminate was placed directly on the 

stainless steel plate. Next the green laminate and a second separator sheet 

was added. The aggregate was covered with fiberglass bleeder cloth which was 
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also trimmed to the size of the green laminate. A corprene dam consisting of 

9 mm wide strips of corprene was placed around the aggregate. A Mylar* per- 

forated sheet was then added. A sheet of 181 fiberglass cloth was then placed 

on top this stack. The complete package was then placed on the heater plate in 

a vacuum bag. Before the cure cycle was initiated, full vacuum was applied to 

the package, any leaks were corrected, and check was made to insure that there 

were no wrinkles on the laminate. 

The following cure schedule recommended by General Dynamics was used for 

the T300/Narmco 5208 composite panels: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Full Vacuum is applied to the bagged green layup. 

The panel is heated from room temperature to 
135°C (+2.5,-5°C) in 40 ? 8 minutes (correspond- 
ing to a 3"C/minute heat up rate.) 

The layup is held at full vacuum and 135°C 
(+2.5"C,-5°C) for 6O(rt 5) minutes. 

Pressure is then increased to 6 (kO.35) kg/cm' 
The vacuum is vented to outside air when the 
pressure has reached 1.76 kg/cm2. 

Upon reaching 6 (20.35) kg/cm2, the temperature is 
increased to 179°C (+5"C,-2.5"C) in 15 (? 3) minutes. 

The system is held at 6 (20.35) kg/cm2 and 179°C 
(+ 5"C,-2.5"C) for 120 (+5) minutes. 

The system is then cooled to 60°C maintaining 
the -6 (kO.35) kg/cm2 pressure for not less than 
30 minutes. 

The panels are postcured subsequently for 240 (2 5) 
minutes at 204°C (+5.0°C). The heatup rate for postcuring 
panel is from RT to 204OC in 64 (+ 10) minutes. 

Throughout the postcure, the panels were loosely supported between two 

layers of 13 to 19 mm thick aluminum honeycomb core. Following the cure, 

the laminates were cut into 178 by 32 mm size samples using a diamond blade 

mounted on a saw. 

*Mylar: Registered trademark of E.I. Du Pont de Nemours & Co., Inc. 
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4.7.3. Appakatusdoh Sample IhUd.iaa%?n 

The systems used for ultraviolet exposure consist of 38 mm diam. and 

305 mm long quartz tubes sealed on stainless steel and equipped with 70 mm 

CFF flanges and ultra-high vacuum valves. For electron irradiation, Pyrex* 

tubes of the same size and valves with gold seals were employed. These 

vacuum assemblies allow gas collection for GC and GC/MS analysis of volatile 

by-products evolved from the sample during radiation exposure. The exposure 

tubes containing the composite samples were dried at 120°C overnight under 

reduced pressure. The tubes were subsequently evacuated to 10" torr or less 

using an ion pump. The vacuum system utilized in this study is shown in 

Figure 5. Figure 6 shows a tube assembly equipped with a copper-constantan 

thermocouple to monitor sample temperature variations during electron exposure. 

4.7.4. Radicxltion SouUti 

4.1.4.7. uavioeti Souhce 

The ultraviolet radiation source used in this study is a A-H6 high pres- 

sure, quartz-jacketed, water-cooled mercury-arc lamp. The output of this 

lamp approximates the solar-spectral distribution (Figure 7). Its radiant 

energy is emitted mainly in a broad continuum spreading all the way down to 

below 230 nm. Its high ratio of ultraviolet-to-total energy allows accele- 

rated ultraviolet testing at several equivalent solar factors. 

4.1.4.2. High Enagy Elk&on Souhce 

The electron linear accelerator of IRT Corp. has been utilized for high 

energy electron exposure. This system can provide electron beams over a wide 

range of energies. The samples were irradiated at a mean dose rate of 10.8 

kradlsec. Although dose rates as high as 50 krad/sec could be achieved, a 

lower dose rate was employed to prevent an excessive temperature increase of 

the samples. At the dose rate employed, the irradiated samples reached a 

maximum temperature of 49°C. 

The samples were mounted in a specially designed holder shown in Figure 8. 

Concrete block shielding was provided for the valves as shown. The samples 

* Pyrex: Trademark of Corning Glass Works. 
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Figure 5. VACUUM SYSTEM 



t 

/ 

Figure 6. Vacuum Assembly for High-Energy Electron Exposure 
and Sample Temperature Monitoring 
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Figure 7. Ultraviolet Spectral Energy Distribution 
of AH-6 Lamp, the Sun in Space, and Sun 
at Sea Level 
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Figure 8. Irradiation configuration for composite samples. 
Sample position is indicated as is the total dos 

TO ELCOR CURRENT 
INTEGRATOR 

TOP VIEW 

ON 

CEMENT BLOCKS 

/ 'Al FOIL BEAM 
SAt4PLES HONlTOR 

Figure 9. Experimental setup for composite irradiation 

iradsj received. 
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occupied an area of approximately 30 x 56 cm. A fan provided some cooling 

although, in retrospect, it probably was not necessary. The sample tubes were 

oriented horizontally with the valves at the outer edges as shown. The samples 

were placed approximately 3.96 m from the end of the IRT single section Linac 

as shown in Figure 9.. The accelerator was tuned to provide a 12 MeV beam with 

an average pulse current of 575 PA, a pulse width of 6 us, and a repetition 

rate of 180 Hz. The beam was rastered across the sample area with an IRT 

magnetic coil deflection unit. 

Dosimetry was provided with plastic film dosimeters. The beam map 

shown in FigurelOindicates that beam uniformity was good. As this type 

of dosimeter is limited to a total dose of about 10 Mrads, much lower than 

required, a secondary beam monitor was provided. This was an Al foil secondary 

emission monitor placed in front of the samples. The current generated by 

secondary electron emission as the primary beam traverses the foil is read by 

a current integrator whose output is calibrated against the dosimeter. Thus, 

total dose accumulated could be related to charge collected by the monitor. 

4.7.5. RadiaaXon Expohuke Condi;tioti 

The ultraviolet doses employed are shown in Table 11. Ultraviolet expo- 

sure tests were conducted using a space ultraviolet acceleration factor of four, 

which is equivalent to an ultraviolet flux of -0.7 Cal/cm2 min in the wave- 

length region 200-400 nm. 

The electron exposure doses are shown in Table 12. The samples were 

irradiated at a mean dose rate of 10.8 krads per second. Samples A, B, C-4 

were irradiated for 79.6 min and received a total dose of 5 x 10' rads. Sam- 

ples A, B, C-3 were irradiated for 153.8 min and received a dose of 1 x 10' 

rads. Samples A. B. C-2 were irradiated for 769.2 min and received a total 

dose of 5 x lo* rads. Finally, samples A, B, C-l were irradiated for 1538.5 

min and received a total dose of 1 x 10' rads. According to the thermocouple, 

sample C-l reached a maximum temperature of about 49y. Since the sample con- 

figurations were basically identical and the dose rate relatively uniform 

over the entire irradiation area, there is no reason to doubt that the other 

samples stayed at about the same temperature. 
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Sample No. 

75 
8 

if3 
19 
20 

21 
22 
23 
24 

i4" 
35 
36 

Table 11 

ULTRAVIOLET EXPOSURE TEST CONDITIONS 

Material 

Fiberite 705/60 
II 
II 

Fiberite 934/T300 
II 
II 
II 

Polysulfone P17OO/C6000 
II 
II 
11 

Narmco 5208/T300 
II 
II 
II 

Ultraviolet Dose, ESH* 

20 
420 
592 

210 
480 
720 
960 

240 
480 
720 
960 

240 
480 
720 
960 

* ESH = Equivalent Sun Hours 

Table 12 

ELECTRON EXPOSURE TEST CONDITIONS 

Sample I.D. 

A-4 
A-3 
A-2 
A-l 

B-4 
B-3 
B-2 
B-l 

c-4 
c-3 
c-2 
C-l 

Material 

Fiberite 934/T300 

Polysulfone P17OO/C6000 

Narmco 5208/T300 

Dose (rads) 

5 x 10' 
1 x 108 
5 x lo8 
1 x lo9 

5 x 10' 
1 x lo8 
5 x lo8 
1 x lo9 

5 x 10' 
1 x lo8 
5 x lo8 
1 x lo9 
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4.7.6. Gc hatLjbh 

After irradiation, the sample tube assembly is attached to the vacuum 

line, filled with zero grade Helium and the gases allowed to rni-x for one 

hour prior to analysis. An irradiated blank was run through the analysis 

procedure with the following results: 

H2 = 25 ppm (v) 

CHI, = not detected (cl00 ppb [v]) 

co = not detected (cl00 ppb [v]) 

CO2 = 250 pph (v) 

Both the H2 and CO2 were identified as impurities present in the helium used 

to fill ihe sample tube, and deducted from the results. 

4.1.6.1. Anatyb& 04 S02 

SO2 analysis was conducted using a gas chromatograph fitted with a 

sulfur specific flame photometric detector. Separation was accomplished using a 

254 x 3 mm stainless steel column packed with Porapak QS. The analysis was 

run isothermally at 18OOC. Helium was used as a carrier gas. Detector insta- 

bility and wall absorption of SO2 complicated the analysis and made SO2 

quantification uncertain. 

4.1.6.2. Andgbih 06 tf2, C/f,,, CO, CO2, and Low Mo&m.hm 
weight Hydtocmboti 

HZ, CH4, CO, and hydrocarbons up to C3 were analyzed using a Trace Gas 

Analyzer equipped with a Helium ionization detector. For H2 and CO analysis 

the analyzer was fitted with 508 x 3 mm stainless steel column packed with 

100/120 mesh Molecular Sieve 5A. Helium carrier gas flow was set at 30 ml/min-' 

and the analysis was run isothermally at 100°C. CH,+, Con, and hydrocarbon 

analysis was accomplished by fitting the instrument with 254 x 3 mm column 

packed with a 100/120 mesh Porapak QS. Helium flow was set at 30 ml/min-' and 

the analysis run isothermally at 40°C for CO2 and CH,, and isothermally at 150°C 

for higher hydrocarbons. The sample was injected via a 8.9 ml sample loop 

attached to both the Trace Gas Analyzer and a standard vacuum line. This setup 

allows the sample loop to be evacuated, filled with sample at a known pressure, 

and injected without danger of contamination due to atmospheric gases. The 
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instrument was calibrated using two standard gas mixtures (10 ppm each of HP, 

CO, and CH,,, and CO2 in He; and 50 ppm of C2H6, and C~HB in He). 

4.1.7. GC/MS hdyb~ 

4.1.7.1. Chyogenic SampLe CokXetin 

For GC/MS analysis, the remaining gas sample from the irradiated polymer 

tube was collected in a cryogenic trap. To accomplish this one exit of the 

trap was connected to the sample tube and the other exit connected to a stan- 

dard laboratory vacuum system. Vacuum tight connections were provided with 

stainless steel fittings equipped with Teflon* ferrules. The sample was 

slowly withdrawn from the tube through the liquid N2 cooled trap by utilizing 

the vacuum system. Rate of sample withdrawal and collection was controlled with 

a needle valve situated between the trap and the vacuum system. Sample pres- 

sure was measured with a Wallace-Tiernan type absolute pressure gauge. The 

sample was continuously withdrawn until the pressure read zero, Total col- 

lection time for the 15G-200 ml (STP) of sample was approximately 30 minutes. 

Upon termination of the collection procedure the trap was filled with UHP He 

to ambient pressure, removed from the collection apparatus (while maintaining 

liquid N2 temperature), sealed off and transported to the GC/MS. 

4.1.7.2. Computerr ConakoUed GCIMS 

All samples were analyzed for volatile organics by combined gas chroma- 

tography-mass spectrometry under computer control (GC-MS-COMP). 

After collection of the vaporous components in a liquid-nitrogen-cooled 

stainless steel trap, the trap was attached to the (modified) injection port 

of the GC. By rapidly heating the trap (up to 250'C),..while reverse-flushing 

with helium carrier gas for 1 minute, the sample was injected directly onto the 

GC column for analysis. A 50 m x 0.05 mm I.D. OV-101 SCOT column was used, 

with a carrier gas flow rate of 3.0 ml/min and an injector split ratio of 1O:l. 

The column was held initially at a temperature of 35°C for 10 minutes, then 

programmed at 4'C/min to 21OOC. 

*Teflon: Registered trademark of E.I. Du Pont de Numours & Co., Inc. 
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The total column effluent was cou-pled directly to a double-focusing mass 

spectrometer operated at low resolution. The ion source of the mass spectro- 

meter consists of a combination standard electron impact source and an electron 

impact ionization detector (EID). By operating the EID at a low electron energy, 

the carrier-gas-free total ion current signal from the GC could be monitored in 

real-time using a strip chart recorder. 

On injection, the magnet of the mass spectrometer was set to scan cycli- 

cally throughout the GC run from m/e 20 to m/e 250 every 2.4 sec. The data 

were gathered and stored using data system with disk-based mass storage. At 

the end of a run, ion abundance data from each scan were numbered and plotted 

as a function of spectrum scan number using visual display unit. A typical 

total current profile (TICP) obtained in this way is shown in Figure 11. 

The raw GC-MS files were transferred by magnetic tape to an off-line 

computer system for data "clean-up", followed by spectrum identification 

and quantitation. 

4.1.7.3. Vasta EnfumxmevLt Sped Zdeti@tion 

It is well established that the mass spectra obtained from the GC-MS 

analysis of complex mixtures are often markedly different from the spectra 

of the corresponding pure compounds, largely due to contributions from back- 

ground noise and overlapping peaks. These extraneous contributions can 

severely compromise compound identification efforts and measurements of rela- 

tive concentrations. Dromey et al. ' have developed an effective minicomputer- 

based method (Program CLEANUP) to automatically extract background-free and 

resolve mass spectra of mixture components from GC-MS data by the systematic 

application of a tabular peak-modeling technique to mass chromatograms in the 

data file. The use of this algorithm enhances the GC resolution and also gives 

"pure" spectra by using masses which have maximized at any given spectrum number. 

' R.G. Dromey, M.J. Stefik, T.C. Rindfleisch, and A.M. Duffield: Extraction 
of Mass Spectra Free of Background and Neighboring Component Contributions 
from Gas Chromatography/Mass Spectrometry Data,Jnal. Chem., 48, 1368 (1976). 
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STEP !JPtw- lrIHT-1000 

Figure 11(a). Mass Spectrometer Total Ion Current versus Spectrum Scar? Number 
or Retention Time for condensable fractions from ultravlolet 
exposed Fiberite 705/60 laminates (20 ESH). 



n 

Figure 11(b). Mass Spectrometer Ion Current versus Spectrum Scan Number or 
Retention Time for condensable fractions from ultraviolet 
exposed Fiber,, ;+e 705/60 laminates (20 ESH). 



Identification of the resolved spectra is then established using a com- 

puter-based mass spectral search system (Biemann Method) or by manual 

comparison with Eight Peak Index2. 

4.1.7.4. $umtihdve Andybh 

Ideally, compounds may be quantitated by first preparing a calibration 

curve, relating peak area to amount of solute over the concentration range of 

interest, and then determining the amount of the compound present in the sam- 

ple from the standard curve. However, because of the complexity of the samples 

in the present investigation, extensive use of standards throughout the elu- 

tion range is obviously impractical. 

Smith et al. 3 have developed a method (program TIMSEK) to compute rela- 

tive concentrations of components based on one or more standards, using the 

same "cleaned-up" GC-MS data which previously yielded information on the iden- 

tity of the individual components. The algorithm can also be used to automat- 

ically calculate relative retention indexes using suitable homologous-series 

standards. Relative retention index data is used to establish identity in 

those cases where closely-related compounds exhibit very similar mass spectra. 

After obtaining the corrected area for each peak from CLEANUP, the rela- 

tive concentration of the ith component is calculated by TIMSEK from 

Rel. Cone (i) = Area1 TIC of the ith component 
Area1 TIC of internal standard (1) 

Determination of relative concentrations provides a means of quantitatively 

comparing GC-MS profiles but does not measure the actual amount of each com- 

ponent. To obtain an estimate of the amount of a particular component present 

in the sample, we have simply established, in a separate experiment, the MS 

response factor for known amounts of a standard (n-decane). This factor 

has then been used to determine the amount of each substance of interest in 

terms of n-decane, by direct conversion of the peak areas. 

2 "Eight Peak Index of Mass Spectra", Mass Spectrometry Data Center, AWRE, 
Aldermaston, Reading, !JIIL,1970. 

3 D.H. Smith, M. Achebach, W.J. Yeager, P.J. Anderson, Fitch, and T.C, 
Rindfleisch: Quantitative Comparison of Combined Gas Chromatographic/ 
Mass Spectrometric Profiles of Complex Mixtures3 Anal. Chem., 49, 1623 (1977). .---_-_.- 
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4.1.8. Co~pmbbive and Fk!exuhd Sa%mgtth Meab~~emevdb 

After gas analysis, the laminate samples were removed from the exposure 

tubes and cut using a diamond blade saw as shown in Figure 12. Compressive 

strength of laminate samples has been obtained utilizing the IITRI compression 

test fixture. This fixture provides a method of aligning the specimen for 

uniaxial loading. As Figure 13 demonstrates, the fixture consists of a pair 

of trapezoidal wedge grips grasping either end of the specimen. The wedge 

grips are used to apply the compressive loads to the tabs. This feature 

ensures plane-to-plane contact for the test specimens throughout the loading. 

The advantage of this fixture lies in the fact that a straight-sided test 

specimen can be used. Individual specimen tab thickness variations are per- 

mitted, provided only that the tab surfaces are parallel and thus surface- 

to-surface contact is attained at all wedge positions. In use, prestressing of 

the specimen tabs transverse to the specimen is accomplished by bolting across 

the tabs; this measure prevents the slippage of the tabs early in the load 

cycle. Lateral alignment of the fixture top and bottom halves is assured by 

a guidance system consisting of two parallel roller bushings in the upper half 

of the fixture and two corresponding bushing shafts in the lower half of the 

fixture. This feature insures against misalignment in loading. The compression 

specimen geometry is shown schematically in Figure 14. It should be noted that 

all failure loads were below the theoretical buckling loads for the 12.7 mm 

gauge length shown. 

The flexural specimen geometry is shown in Figure 15. 

4.2 RESULTS AND DISCUSSION 

4.2.1. GC and GCIMS Avudybi6 04 Vo.iZua%e By-Pwduti 

4.2.1.7. Pneeiminany UV SWa 06 Fib&.& 705160 

Preliminary GC and GC/MS analysis of volatile by-products evolved during 
ultraviolet exposure have been performed on Fiberite 705/60. The GC results 

obtained are shown in Table 13 for samples exposed 20, 420, and 592 ESH. 

GC/MS data for 20 ESH samples are shown in Table 14. The helium ionization 

detector employed for GC analysis was found inadequate for SO2 measurements. 

(In subsequent work, SO2 was measured by separate GC analysis with a flame 
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Figure 12. Utilization of exposed samples for 
mechanical testing. 
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Figure 13. Schemati-c of the IITRI Compression Test Fixture. 
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Figure 14. Compression Specimen Geometry 

Figure 15. Flexural Specimen Geometry 
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Table 13 

ULTRAVIOLET IRRADIATION OF FIBERITE 705/60 LAMINATES. 
GC ANALYSIS OF EVOLVED PRODUCTS'BY USING A PORAPAK QS COLUMN. 

Yield*, mole x 10m6 
Product 20 ESH$* 420 ESH 592 ESH 

H2 0.51 0.36 1.70 
CHI, 0.024 0.076 0.16 

co 0.67 2.07 3.28 

co2 0.33 1.14 1.13 

C2Hs traces traces 0.023 

C3He traces traces 0.012 

* Surface Area of exposed samples, 56.5 cm2 

** Equivalent Sun Hours 

Table 14 

ULTRAVIOLET IRRADIATION OF FIBERITE 705/60 
LAMINATE. GC/MS ANALYSIS OF EVOLVED 

PRODUCTS BY USING OV-101 COLUMN. 
EXPOSURE DOSE, 20 ESH 

Product 

Benzene 

Acetone 

Toluene 

Ethylbenzene 

Stryene 

Isopropyl benzene 

Yield* 

mole x lo-lo 

325 

153 

93 

31 

5.1 

0.8 

*Surface area of exposed sample 
56.5 cm2 
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photometric detector). The results obtained indicate that degradation occurs 

via a free radical process and that several concurrent degradation mechanisms 

are involved, primarily at the isopropylidene linkage. 

Formation of HZ, CHI,, and C2Hs can be explained in terms of cleavage of 

C-C and C-H bonds at the isopropylidene unit followed by free radical quenching 

via H or CH3 abstraction: 

H2 +&& 

I 

3 

Formation of CO, would be expected under photo-oxidative conditions, 

but in a vacuum it cannot be explained by any reasona 

possible that carbonyl groups were initially present 

a result of oxidation reactions during processing. 

Formation of CO can be ascribed to decarbonylati 

ble mechanism. It is 

in the polymer as 

on reactions. A possible 

path involves recombination of phenoxy radicals with -CH2. radicals followed 

by cleavage, disproportionation and decarbonylation: 
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cli, CH3 cil, 

CHO 

Formation of benzene requires two cleavage reactions and two hydrogen abstractions. 

Toluene is formed by a similar process but methyl abstraction instead of 

hydrogen abstraction takes place at the phenyl radical: 

I hv 

QJ,' t 
l 0 

0 
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Ethylbenzene and styrene arise from a double process of cleavage and 

hydrogen abstraction at the isopropylidene unit. The l-phenyl, l-ethyl radi- 

cal is produced which can form styrene end groups (by disproportionation) or 

ethylbenzene end groups (by hydrogen abstraction): 

t 

-CH = CH iH 

tH3 

+ l CHj 

From these end groups, cleavage and hydrogen abstraction at the bond connecting 

the benzene ring to the polymer chain result in the formation of styrene and 

ethylbenzene. 

Formation of isopropylbenzene requires the following reaction mechanism: 

Subsequent cleavage of the phenyl-isopropyl bond explains the formation of 

propane: 
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CH3 CH3 I I 
CH . t l CH 
I I 

CH3 dH3 

CH3 - CH2 - CH3 
+q#e 

CH3 

Formation of acetone is ascribed to the decomposition of isopropylbenzene 

hydroperoxide which is photolytically decomposed to acetone and phenol: 

CH3 I 
C-O-O-H hz, OH + CH ! CH 3” 3 I 
CH3 

As indicated in the case of CO2 formation, formation of acetone confirms 

that oxygen plays a role in the photolytic process, in spite of the fact that 

the irradiations were conducted under high vacuum. It is difficult to see how 

the in-chain oxygen atoms of polysulfone could be responsible for these photo- 

oxidative mechanisms. Most likely, peroxidated groups were originally present 

in the polymer. Oxidative processes may also arise from the photodecomposition 

of SO2 into SO and OZ.. These possible mechanisms will be discussed later for 

other matrix resins evaluated in this study for which analysis of sulfur 

compounds is available. SO2 can result from the cleavage of C-S bonds fol- 

lowed by elimination of S02: 
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4.2.7.2. UV and El!e&ton Expoauhe Sahdh 06 Pok+!d~one P77OOfC6000, 
Namco 520b/T300, and Fi.bu&e 934/1300 

Results of GC analysis of volatile by-products evolved during irradiation 

are shown in Tables 15-17 and 18-20. The same data are presented graphically in 

Figures 16-21 and 22-27 for ultraviolet and electron irradiated samples respec- 

tively. In the tables, gas formation is expressed as total moles formed during 

irradiation. In the graphs, gas formation is shown as moles produced per square 

centimeter of irradiated sample (in the case of ultraviolet exposure) or per 

gram of irradiated resin ( in the case of electron exposure). This allows 

direct comparison of gas yields for different materials, since the resin content 

of the three laminates was different and the sample size was also slightly 

different. These results can be generally interpreted in terms of free radical 

processes involving several bonds in the polymer structures. Although the pri- 

mary process of electron radiation damage involves ionization, subsequent steps 

leading to chain scission and cross-linking, with concurrent gas formation, take 

place by free radical mechanisms. This explains the similarity of the products 

obtained by ultraviolet and electron irradiation. 

Formation of hydrogen, methane, ethane and propane has been discussed in 

a previous section for Fiberite 705/60. Formation'of these gases was explained 

in terms of free radical reactions at the isopropylidene linkage. The same 

mechanisms are expected to take place with P17OO/C6000. To some extent, these 

mechanisms may also apply to Narmco 5208, which contains a small percentage of 

a bisphenol-A resin. For Fiberite 934, that does not contain bisphenol- A, the 
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Table 15 

ULTRAVIOLET IRRADIATION OF P1700KELION 6000 LAMINATES. 
GC ANALYSIS OF EVOLVED PRODUCTS BY USING A PORAPAK QS COLUMN. 

Product 240 ESH** 
Yield*, mole x 10s6 
480 ESH 720 ESH 960 ESH 

H2 0.18 0.75 1.15 1.25 
CHI, 0.11 0.33 0.81 1.25 
co 2.5 4.29 6.79 7.86 
co2 2.25 3.18 4.54 5.0 
C2H6 0.011 0.056 0.12 0.15 
C3H6 0.032 0.052 0.093 0.12 

* Surface area of exposed samples, 43.1 cm2 

** Equivalent Sun Hours 

Table 16 

ULTRAVIOLET IRRADIATION OF 934/T300 LAMINATES. 
GC ANALYSIS OF EVOLVED PRODUCTS BY USING A PORAPAK QS COLUMN. 

Product 
Yield*, mole x 10m6 

210 ESH** 480 ESH 720 ESH 960 ESH 

Hi 0.017 0.44 0.6 1.0 
CH4 0.24 0.22 0.2 0.42 
co 2.0 5.0 7.14 6.78 
CO2 1.20 3.18 5.0 4.32 
C2H6 0.066 0.16 0.057 0.24 
C3Hs 0.017 0.03 0.009 0.052 

* Surface area of exposed samples, 56.5 cm2 

** Equivalent Sun Hours 
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Table 17 

ULTRAVIOLET IRRADIATION OF 5208/T300 LAMINATES. 
GC ANALYSIS OF EVOLVED PRODUCTS BY USING A PORAPAK QS COLUMN. 

Product 
Yield*, mole x 10m6 

240 ESH** 480 ESH 720 ESH 960 ESH 

H2 2.16 3.06 5.09 

CH4 0.51 0.88 1.57 

co 5.55 6.47 8.83 

CO2 1.29 1.64 2.57 

C2H6 0.30 0.31 0.43 

C3H6 0.043 0.054 0.082 

so2 not detected not detected - 

5.30 

1.85 

10.3 

2.91 

0.45 

0.096 

* Surface area of exposed samples, 56.5 cm2 

** Equivalent Sun Hours 

Table 18 

ELECTRON IRRADIATION OF P1700/CELION 6000 LAMINATES. 
GC ANALYSIS OF EVOLVED PRODUCTS BY USING A PORAPAK QS COLUMN. 

Product 5 x 10' rads 
Yield*, mole x 10m6 

10" rads 5 x 10" rads 10' rads 

H2 1.51 2.41 17.5 64.7 

CHI, 0.25 0.37 1.25 2.6 

co 1.76 2.48 8.79 14.4 

co2 0.95 1.45 5.79 14.8 I 

C2ti6 0.0045 0.010 0.043 0.054 

C3He 0.0024 0.0074 0.017 0.019 

so2 not detected not detected 0.025 0.087 

* Weight of exposed samples, 5.139 (44.5%-wt resin) 
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Table 19 

ELECTRON IRRADIATION OF 934/T300 LAMINATES. 
GC ANALYSIS OF EVOLVED PRODUCTS BY USING A PORAPAK QS COLUMN. 

Product 
-I Yield*, mole x low6 

5.x 10’ rads 10’ rads 5 x 10" rads 10’ rads 

HP 6.65 17.1 78.2 48.9 

CH4 0.015 0.025 0.15 0.58 

co 0.43 0.66 4.87 10.2 

CO2 0.80 1.07 2.40 4.33 

C2H6 0.0013 0.0042 0.017 0.061 

C3H6 absent 0.0015 0.0090 0.043 

SO2 0.053 not detected 0.043 not detected 

* Weight of exposed samples, 5.839 (45.1%-wt resin) 

Table 20 

ELECTRON IRRADIATION OF 5208/T300 LAMINATES. 
GC ANALYSIS OF EVOLVED PRODUCTS BY USING A PORAPAK QS COLUMN. 

Product 5 x 10’ rads 
Yield*, moles x 10m6 

10’ rads** 5 x 10” rads 10’ rads 

HP 3.2 

CH4 0.03 

co 1.76 

CO2 6.18 
C2H6 absent 

C3H6 absent 

SO2 0.017 

18.5 190 
0.077 1.42 

3.22 28.5 

17.1 13.5 
absent 0.13 

absent 0.067 

not detected not detected 

* Weight of exposed samples, 4.479 (52.8%-wt resin) 

** Leaking valve, gas sample was not analyzed. 
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X P17OO/C6000 

0 Fiberite 934/T300 

0 Narmco 5208/T300 

250 750 1000 
EQUIVALENT SUN HOURS 

Figure 16. Hydrogen formation during ultraviolet 
radiation exposure. 
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x P17OO/C6000 
0 Fiberite 934/T300 

0 Narmco 5208/T300 

E~WIVALENT SUN HOURS 

Figure 17. Methane formation during ultraviolet 
radiation exposure. 
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X P17OO/C6000 

0 Fiberite 934/T300 

x lo-* 0 Narmco 5208/T300 

EQUIVALENT SUN HOURS 

Figure 18. Ethane formation during ultraviolet radiation 
exposure. 
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x 10-8 
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x P17OO/C6000 

0 Fiberite 934/T300 I 
0 Narmco 5208/T300 

EQUIVALENT SUN HOURS 

Figure 19. Propane formation during ultraviolet radiation 
exposure. 
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0 Fiberite 934/T300 

0 Narmco 5208/T300 

EQUIVALENT SUN Hc 

Figure 20. Carbon monoxide formation duri 
radiation exposure. 
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x 10-8 

12 

e 

X P17OO/C6000 

0 Fiberite 934/T300 

EQUIVALENT SUN HOURS 

Figure 21. Carbon dioxide formation during ultraviolet 
radiation exposure. 
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Figure 22. Hydrogen formation during electron radiation 
exposure. 
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Figure 23. Methane formation during electron radiation exposure. 
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Figure 24. Ethane 'formation during electron radiation 
exposure. 
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Figure 25. Propane formation during electron radiation 
exposure. 
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x 10-6 
2 

X P17OO/C6000 

0 Fiberite 934/T300 

0 Narmco 5208/T300 

Figure 26. Carbon monoxide formation during electron 
radiation exposure. 
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x P17OO/C6000 

cl Fiberite 934/T300 

0 Narmco 5208/T309 

Figure 27. Carbon dioxide formation during electron 
radiation exposure. 
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glycidyl groups of MY720 are believed to be mainly responsible for the formation 

of hydrogen and low molecular weight hydrocarbons. 

Initial G values and quantum yields for gas formation are reported in 

Table 21. Initial values are more significant than average values, since the 

gas evolved from the samples is retained in the exposure tubes and may undergo 

further reactions. It is interesting to compare the G values for HZ and CHI, for 

the three laminates tested. These G values can be related to the presence of 

isopropylidene units (bisphenol-A) in the matrix resins, and show that methane 

is more readily formed when bisphenol-A is present due to the energetically 

favored elimination of CH3. radicals from the isopropylidene units followed by 

hydrogen abstraction. (Hydrogen abstraction is favored over CHB. radical 

recombination, as indicated by the fact that yield of methane is always higher 

than that of ethane). The concentration of isopropylidene units (due to 

bisphenol-A) decreases in order P1700>5208>934. In the same order, GH2 increases 

(from 9.3 to 24.9 to 48.6) and GCH decreases (from 2.1 to 0.13 to 0.11). 

However, this trend is not apparent for the quantum yields of ultraviolet 

exposed sample. 

With the exception of the oxides of carbon, H2 is by far the predominant 

product of electron irradiation (on a molar basis), particularly in the case of 

Fiberite 934 and Narmco 5208, for which GCH is low. In the case of ultraviolet 

irradiation, H2 and CH,+ are both important iroducts. 

High yields of CO and COn have been found for all samples exposed to 

ultraviolet and electron irradiation. Likewise, high yields of CO and COn have 

been reported by Gesner and Kelleher' for ultraviolet irradiation of polysulfone 

in a vacuum. A possible mechanism of CO formation from P1700 has been discussed 

previously for Fiberite 705/60. For epoxy type systems, such as Fiberite 934 

and Narmco 5208, CO may arise from the decomposition of alkoxy linkages: 

4B.D. Gesner and P.G. Kelleher: Thermal and Photo-Oxidation of Polysulfone. 
J. Appl. Polym. Sci. 12. 1199 (1968). 
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- 

Product 
Initial quantum yields*, x lo-' Initial G values**, x low3 

P17OO/C6000 934/T300 5208/T300 P17OO/C6000 934lT300 5208lT300 

HZ 0.20 0.037 1.11 

CHI, 0.078 0.18 0.33 

CZH6 0.01 0.05 0.11 

C3He 0.027 0.013 0.025 

co 1.90 1.47 3.26 

co2 1.57 0.92 0.66 

C6H6 0.002 0.0015 0.026 

so2 not measured not measured 0.0027 

Total 3.79 2.67 5.52 

Table 21 

INITIAL QUANTUM YIELDS AND G-VALUES FOR MAIN GAS FORMATION 

9.3 48.6 

2.1 0.11 

0.042 0.012 

0.028 0.0045 

10.5 3.1 

6.1 3.9 

0.0034 <1o-3 
0.014 not determined 

28.1 55.7 

* Molecules formed per photon absorbed in the ultraviolet region. Calculations 
based on a quantum flux of 1.327 x 10-lo Einsteins/sec cm2 in the 200-400 nm range. 

** Molecules formed per 100 eV absorbed. Only the polymer portion of the 
laminates has been taken into account for the calculations. 

24.9 

0.13 

<lo- 3 

(10-j 

23.0 

80.8 

(10-j 

not determined 
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A somewhat similar reaction has been proposed5to explain high evolution of CO 

from a bisphenol-A/epychlorohydrin resin exposed to ultraviolet radiation in 

vacuum. Another possible mechanism is the following: 

%CH2-CH-CH2s + %CH&CH+ + H* 
I I 

OH OH 

%CHJ + CO f- %CH2-CHO + l H~C'L 
Formation of CO2 in relatively high yields is surprising and cannot be 

readily explained. Presence of carboxylated groups formed by oxidation during 

processing is a possible explanation. In the case of Narmco 5208 exposed to 

electron irradiation, the rate of CO2 formation was unusually high. These 

experiments should be repeated to determine whether thermal oxidation during 

processing was responsible for the high COP yields. 

Possible oxidative mechanisms leading to CO2 formation may arise from 

oxygen formed by the decomposition of SO2. SO2 is known to decompose photochem- 

ically and radiochemically according to the following mechanism6: 

7 
so + 5502 

so + so3 

Sulfur monoxide rapidly disproportionates to sulfur and SO2 ; likewise, SO, 

decomposed photochemically to SO, and 0,: 

2so _3 s + SOS 

so3 I so2 + %02 

Reaction of oxygen with aldehydic groups (formed by the mechanisms discussed 

previously) followed by decarboxylation may lead to CO2 formation. 

5B.D. Gesner and P.G. Kelleher: 
Polyyt Scj, U.+ 2183 (3969). 

Oxidation of Bisphenol A Polymer, J, &pl, 

6"Inorganic Sulfur Chemistry", G. Nickless ed., Elsevier Publ. Co?, 1968, 
p 374, 
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SO2 quantification was not positively achieved in this study, mainly due to 

detector instability and wall absorption and retention of the polar SOZ. However, 

the available data indicates that SO2 is not a major product of UV and electron 

exposure. Relatively low values for SO 2 formation have been reported by Davis 

et al.' for electron irradiation and by Gesner and Kelleher" for ultraviolet 

irradiation of polysulfone. Interestingly, SO2 has been reported to be the 

major gas product in y-irradiationeyg and thermal degradation"'" of polysulfone 

in vacuum. 

High quantum yields for gas formation have been determined for the three 

systems evaluated (Table 21). These values indicate photolytic instability. For 

comparison, the quantum yields for total gas are of the same order of magnitude 

as in polystyrene, and about an order of magnitude higher than polymethyl- 

methacrylate. 

G values have been previously reported for polysulfone (clear film). Brown' 

reported an average G (total gas) of 0.04 for y-irradiation. Davis' reported an 

average G (total gas) of 0.01 for electron irradiation. Our value for initial 

G (total gas) for P1700 is approximately 0.03 (Table 21). G (total gas) are 

higher for Fiberite 934 and Narmco 5208 (G (total gas) = 0.05 and 0.12 respec- 

tively) mainly because of a higher GH2 (and a higher Gco2 for Narmco 5208). 

However, all values are quite low (for comparison G (total gas) in polystyrene is 

5.7), indicating high electron radiation resistance. The lower G (total gas) for 

P1700 compared to the two epoxy systems indicates greater electron stability of 

P1700 resin, at least in terms of gas formation. Although, as a rule, higher 

radiation stability in terms of gas formation is reflected in higher radiation 

stability in terms of mechanical properties, this may not be true in this case, 

because P1700 is a linear polymer and its mechanical properties are likely to be 

more sensitive to molecular changes than Narmco 5208 and Fiberite 934 which are 

highly cross-linked thermosets. 

'A. Davis, M.H. Gleaves, J.H. Golden and M.S. Huglin: The Electron Irradiation 
Stability of Polysulphone., Makromol. Chem. 129, 63 (1969). 

8J.R. Brown and J.H. O'Donnell: Effect of Gamma Radiation on Two Aromatic 
Polysulfones, J. Appl. Polym Sci 19, 405 (1975). 

'J.R. Brown and J.H. O'Donnell: Efl%cts of Gamma Radiation on Two Aromatic Poly- 
sulfones. II. A Comparison of Irradiation at Various Temperatures in Air-Vacuum 

-Environment , J. Appl. Polym. Sci 23, 2763 (1979). 
loA. Davis, Thermal Stability of Polysulphone., Makromol. Chem. 128, 242 (1969). .- "W.F. Hale, A.G. Farnham, R.N. Johnson and R.A. Clendining: PolyIAryl Ethers) by 

Nucleophilic Aromatic Substitution. II. Thermal Stability, J. Polym. Sci A-l, 
5, 2399 (1967). 
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Results of GC/MS analyses on higher molecular weight compounds condensible 

at liquid nitrogen temperature are shown in Tables 22-24 and 25-27 for ultraviolet 

and electron exposed samples respectively. Although a large number of products 

have been identified, particularly for ultraviolet exposed samples, the majority 

of these products is present only in trace quantities. These products do not 

contribute significantly to the total gas yield, and, with the possible excep- 

tion of benzene and acetone, do not play a significant role in the overall 

degradation process. However, they contribute toward some understanding of 

the mechanisms of radiation damage. Although a much greater variet.y of com- 

pounds were identified from ultraviolet exposed samples, there are remarkable 

similarities between the products obtained with ultraviolet and electron irradi- 

ation, indicating that similar free radical processes take place. The same obser- 

‘Jat?Ofl was made earlier for the products identified by GC with a Porapak column. 

A surprisingly large number of linear alkanes up to Cl6 have been identified, 

along with alkenes, cycloalkanes and cycloalkenes. These compounds indicate 

that, although radiation attack of the benzene ring relative to the aliphatic 

portion of the polymers is not favored, decomposition of the benzene ring does 

take place under ultraviolet and electron irradiation. Hydrogen abstraction 

from the benzene ring is not energetically favored and is unlikely to occur. 

Phenyl radicals are certainly formed by main chain cleavage, but they are not 

expected to lead to decomposition of the ring. The most likely explanation is 

an attack of the benzene ring by hydrogen atoms to form cyclohexadienyl radicals: 

+ H= 

H 

Formation of cyclohexadienyl radicals has been conclusively demonstrated by 

Lyons12 in a ESR study of y-irradiated polysulfone, in which cyclohexadienyl 

radicals were detected together with phenoxy and phenylsulfone radicals. From 

cyclohexadienyl radicals, cycloalkenes and cycloalkanes. can be readily formed 

by subsequent hydrogen attack. Quenching of cyclohexadienyl radicals may lead 

12A.R. Lyons, M.C.R. Symons and J.K. Yandell: An Electron Spin Resonance 
Study of the Radiation Damage of Polysulphone, Makromol. Chem. 157, 103 
(1972). 
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Table 22. Ultraviolet irradiation of Pl7OO/C6000 Laminates. GC/MS analysis of evolved 
products by using OV-101 column. Surface area of exposed laminate samples, 
43.1 cm2 

TOTAL DOSE (ESH ) 240 480 720 

MPE OF COMPOUND I 
Fcrmula 

Alkanes, open chain 

2-methylpropane 

n-butane 

2-nlethylbutane 

n-pentane 

n-hexane 

P-methylhexane 

branched alkane 

n-heptane 

n-octane 

branched alkane 

n-nonane 

n-decane 

branched alkane 

n-undecane 

branched alkane 

n-dodecane 

branched alkane 

n-tridecane 

branched alkane 

n-tetradecane 

branched alkane 

n-pentadecane -15H32 

Alkenes, open chain 

1-butene or P-methylpropene 

P-butene 

1-pentene (or ethylcyclopropane 

methylbutene 

E-pentene (or 2-He-2-butene) 

2-hexene 

I-hexene 

sole 9 
c1o-*o x10-’ 

9.3 11.2 

3.2 9.51 
2.01 1.74 

2.12 2.12 
1.22 1.39 
0.20 0.26 

1.36 1.74 

0.22 0.30 

0.40 0.65 

0.14 0.25 

0.7 6.01 

17 152 

1.76 1.48 

mole 9 
(lo-‘O x10-O 

4.0 42.9 

5.23 3.77 

26 163 

8.08 6.95 

1.68 1.69 
0.85 0.97 

2.9 12.9 
4.75 5.42 

1.40 1.79 
5.20 6.66 

0.83 1.20 

1.19 3.21 
D.1’1 0.18 

9.6 33.4 

5.55 3.11 

32 163 

1.94 1.36 
1.93 1.35 
D.23 0.20 

1.11 0.94 

lole 9 
rlo-‘O x10- 

4.48 2.59 

30 75.7 

2.43 1.75 

13 81.3 

2.0 19.0 
2.08 2.08 

9.8 19.9 
2.4 14.1 

1.02 1.16 

2.5 16.1 

2.63 3.75 

0.39 0.55 

5.73 8.94 

9.44 0.69 

0.30 0.50 

0.23 0.39 

1.73 3.17 

0.06 0.11 

0.19 0.39 
Il.11 0.23 
0.32 0.63 

52.3 29.3 

20.0 11.2 

79.3 55.4 

34.3 24.0 

1 1.03 0.8~ 

4.01 3.3 

960 

mole 9 
x10-10 x10-0 

7.38 4.28 

not resolved 

not resolved 

25.0 18.0 

38.8 33.4 

5.22 5.11 

2.19 2.49 
38.7 38.7 

20.1 23.0 

2.87 3.68 

16.4 21.1 

4.6 5.54 

0.32 0.46 

7.3 11.4 

0.73 1.14 

0.35 0.61 

0.12 0.21 

0.70 1.29 

58.5 38.4 

9.38 5.25 

202 141 

0.70 0.49 

1.40 1.17 

7.09 5.96 
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Table 22. (can’t.) 

l- 
TOTAL DOSE (ESH) 

TYPE OF COMPOUND 

Z-heptene 

1-heptene 

4-methyl-2-hexene 

2-or 3.methyl-2-hexene 

I-octene 

1-nonene 
t-butylcyclohexene 

Alkanes, cyclic 

cyclobutane 

ethylcyclonrooane (or 1-pentane) 
dimethylcyclopropane 

methylcyclobutane 

cyclopentane 

methylcyclopentane 

cyclohexane 

ethylcyclobutane 

ethylcyclopentane 

dimethylcyclopentane 

methylcyclohexane 

ethylcyclohexane 

trimethylcyclohexane 

methylethylcyclohexane 

isopropylcyclohexane 

sec-'butylcyclohexane 

n-pentylcyclohexane 

Alkenes, cyclic 

cyclopentene 

methylcyclooentene 

cyclohexene 

4-methylcyclohexene 

-0nnula 

240 

nole 9 
wlo-‘o x10-’ 

C/HI~ 

C7H1 u 

C7H1. 

C7H1.3 

CaHlb 

Cdl, 

CIDH,E 

3.90 8.72 

1.15 1.13 I.55 0.53 
I.36 0.41 I.28 0.32 
3.35 4.22 !.32 2.92 

CrHe 

C>Hlo 

Cd10 

Cd10 

c 5t11 0 

C5H12 

C5H12 

C5H12 

C7H1u 

CTHI* 

C~HI* 

Cd16 

CsHle 

CsHls 

CsHle 

C11H22 

CIIHZZ 

g.66 2.06 .0.3 5.78 
!17 152 !32 163 
12.8 8.96 18.4 19.9 
4.26 2.98 8.94 6.25 

116 81.0 .42 99.7 
0.98 0.83 ?.98 3.34 

11.3 9.55 14.6 29.0 

0.42 0.53 

L% 2.92 1.98 

:G HI o 0.59 0.49 

L IO H i3.9 52.4 

:7H, 2 2.46 2.37 

480 720 

nole 9 
rlO-l” x1o-B 

‘.45 7.31 

39.5 22.1 

202 141 
82.2 57.5 
62.8 44.0 
73 121 
0.0 16.7 
92.7 78.0 

0.27 0.31 

10.9 11.7 
‘9.3 55.4 
18.3 33.8 
8.03 5.62 
15.0 59.6 
2.8 10.7 

15.2 71.6 
0.32 0.27 
0.36 0.35 
0.66 0.65 
3.43 3.36 
2.98 3.34 
0.43 0.54 
0.59 0.74 
0.38 0.49 
0.16 0.26 
0.16 0.26 

0.60 0.59 
0.87 0.86 

5.48 5.37 
1.24 1.40 
0.27 0.34 
0.58 0.73 

0.29 0.41 
0.26 0.41 

3.86 2.62 7.65 5.20 9.84 6.69 
0.49 0.40 3.17 2.60 3.74 3.06 
13.2 51.8 128 104 123 101 

ale 9 
lo-‘0 x10- 

0.71 0.7c 

.5.0 14.7 

0.22 0.21 
0.95 0.93 
1.93 2.16 
2.89 3.65 
0.27 0.38 

960 

mole 9 
x10-‘@ x10-0 

2.06 2.02 
4.4 14.1 

1.30 1.27 
1.84 2.07 
2.64 3.33 
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Table 22. (can't.) 

TOTAL DOSE ( ESH) 480 720 

TYPE OF COMPOUND 
I nole 9 

r10-‘0 x10-l 

methylenecyclohexane C7h 2 0.09 0.09 0.12 0.12 

l-or 3-methyicyclohexene C7H12 1.15 1.11 
t-butylcyclohexene C~ohe 0.16 0.22 
cyclohexylpent-2-ene C11H20 0.23 0.35 

Aromatic hydrocarbons 

benzene 

toluene 

ethylbenzene 

xylene 

isopropylbenzene 

n-pronylbenzene 

ethyltoluene 

trimethylbenzene 

n-butylbenzene 

naphthalene 

n-pentylbenzene 

cyclohexylbenzene 

C.sH6 27.3 21.3 

C7Hs 1.36 1.25 

CeHlo 39.6 42.0 

CeHlG 124 131 

CqH,2 0.26 0.32 

CsHl2 

CqH12 

CsH, 2 

CIOHI~ 

CI OHE 

CIIHI~ 

Cl 2H1 5 

'4.0 57.7 

6.06 5.57 

12.3 44.5 

.43 151 

1.53 0.64 

Aldehydes and ketones 

acetone 

cyclobutanone 

methacrylaldehyde 

methylcyclopentanone 

cyclohexanone 

C3H60 120 70.0 

LHBO 

Lb0 

&HI 0'0 0.67 0.66 

C6H100 51.1 59.8 

4.54 2.64 

2.09 1.46 

2.72 2.67 

Esters 

cyclohexylacetate 

cyclohexylhexanoate 
'AH,,O, 
c 12~~232 

Alcohols, ethers and related compoun 

methanol CH,O 3.49 1.12 4.78 1.53 

ole 9 
lo-lo x10- 

0.72 0.7: 

3.38 3.2: 

0.57 0.8; 

28 99.8 

8.6 17.1 

78.6 83.: 

55 164 

2.17 2.6( 

0.52 0.6f 

2.16 2.6t 

0.97 1.1; 
0.07 0.0s 

0.08 0.11 
6.79 10.0 
0.05 0.01 

12.2 18.7 

'8.7 55.1 

1.17 l.l! 
i7.6 66.3 

0.95 1.3( 

0.87 1.7: 

960 

mole 9 
xlo-‘O xl0 

0.24 0.23 

3.90 3.75 

0.50 0.70 

0.83 1.26 

144 112 

18.7 26.4 

18.1 93.4 

'39 254 

2.19 2.63 
0.43 0.52 

1.01 1.21 
0.84 1.01 

39.6 23.C 

28.1 19.7 
0.52 0.4 

20.1 19.6 

0.27 0.2 
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Table 22. (can't.) 

TOTAL DOSE (ESH ) 

TYPF OF COMPOUND 
%tmula 

ethanol C,H,O 

tetrahydro-2-methylpyran CGHI 20 

1-pentanol C5H120 

cyclopentenediol Ccb02 

phenylether CI zH1 OC 
oxybiscyclohexane CI 2H22C 

Sulfur containing compounds 

carbon disulfide 

carbonylsulfide 

thiophene 

2-or ?-methylthiophene 

methylethylsulfide 

cyclobutanethiol 

methylthioacetate 

cs2 

cos 
C,H,S 
C.H,S 

C3HeS 

C,Hr,S 

C?H50S 

Nitrogen containing compounds 

NONE 

Haloqen containing compounds - - 
chloromethane 

trichloroethylene 

chlorobenzene 

tetrachloroethylene 

CH3C1 

C2HC1, 

C6HIC1 

CPCl" 

T- 

2.50 1.15 

0.09 0.09 0.21 0.21 

0.4i 0.36 

0.10 0.18 

2.81 2.14 2.81 2.14 3.77 2.89 3.77 2.89 

8.20 4.93 8.20 4.93 

1.90 1.61 1.90 1.61 
0.28 0.28 0.28 0.28 

+ 

1.17 0.58 

0.27 0.36 

0.92 1.03 1.33 1.50 

720 I 960 

1.34 1.34 
1.00 0.87 

~2.4 12.4 

0.05 0.0s 

0.63 1.06 

1.01 0.46 
1.92 1.92 
2.53 2.22 

3.79 2.88 4.19 3.18 
3.08 1.84 9.33 5.60 

3.60 3.02 12.6 10.6 

0.95 0.93 2.29 2.24 

0.12 0.09 

0.12 0.11 
0.10 0.09 

=I= 
2.27 1.14 2.49 1.24 

1.79 2.35 0.45 0.59 
3.33 3.75 3.58 4.00 

0.84 1.40 0.05 0.08 
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Table 23. ultraviolet irradiation of 934/T300 laminates. GC/MS analysis of 
evolved products by usinq OV-101 column. Surface area of exposed 
laminate sample, 56.5 cm . 

TOTAL DOSE ( ESH) 

TYPE OF COMPOUND 
Formulc 

Alkanes, open chain 

n-butane 

n-pentane 

2-methylpentane 

3-methylpentane 

2.2-dimethylbutane 

n-hexane 

n-heptane 

3-methylhexane 

2-methylhexane 

branched alkane 

branched alkane 

n-octane 

branched alkane 

n-nonane 

branched alkane 

n-decane 

branched alkane 

n-undecane 

branched alkane 

n-dodecane 

n-tridecane 

branched alkane 

n-tetradecane 

branched alkane 

n-pentadecane 

Alkenes. open chain 

propene (tentative) 

butene or 2-methylpropene 

1-pentene 

ClrHlo 

C,HIZ 

C~HI- 

CsHlb 

C5H1* 

CUHI~ 

C~HIS 

C7Hi 5 

TH, 5 

,?H,; 

CeHls 

CsHlr 

,sHzu 

,sHz. 

,lGH22 

,loHzz 

CIIH-U 

CIIH:U 

c, 2,,26 

Cl~H25 

c,13HLB 

:I 3H2e 

C14Hso 

,~uH,o 

,15H32 

C. H6 

C, HE 

C5H1 o 

210 480 

aole 9 1ole 9 
(10 ‘I0 x10- 11o-'o x10-O 

0.14 0.10 
3.84 2.23 1 
3.28 2.36 2 

0.07 0.06 
0.17 0.15 
0.86 0.74 
0.99 0.99 

0.16 0.14 
2.71 2.34 

0.10 0.12 
0.79 0.90 

0.40 0.51 

0.15 0.22 

3.46 3.46 
0.09 0.09 
0.12 0.12 
0.06 0.06 
0.77 O.?l 
3.79 4.33 
0.31 0.40 
2.63 3.38 
0.11 0.16 
0.68 0.96 

0.32 0.50 

0.03 0.05 
0.22 0.41 

2.01 3.14 
0.03 0.05 
0.06 0.11 
0.14 0.26 

0.04 0.08 0.03 0.06 

0.10 0.21 3.05 0.11 

8.24 3.46 
3.12 1.75 
0.71 0.50 

1.65 0.93 
3.65 0.46 

.69 0.98 4.70 2.73 

.36 1.71 5.70 4.10 
0.92 0.79 

0.90 0.77 
.42 1.22 6.40 5.50 
.94 1.94 .7.4 17.4 

0.41 0.41 
0.52 0.52 

2.25 2.57 
.80 0.91 5.43 6.20 

0.69 0.88 
.37 0.48 3.03 3.87 

0.20 0.28 
.12 0.18 1.26 1.78 
.07 0.10 0.26 0.40 

.99 1.55 5.28 8.25 

0.13 0.23 

.08 0.14 0.69 1.18 

4.80 8.84 
0.12 0.23 
0.63 1.25 
0.21 0.41 
1.43- 3.05 

II 

x 

1 
1 

0 

0 

0 
0 
0 

0 

35.4 14.8 2.59 1.45 
8.61 4.82 

0.40 0.28 
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Table 23. (can't.) 

TOTAL DOSE (ESH ) 

TYPE OF COMPOUNO r1 

1-hexene 

1-heptene 

2-heptene 

octene 

nonene 

decene 

undecene 

dodecene 

Alkanes, cyclic 

cyclobutane 

methylcyclobutane 

methylcylcopentane 

cyclohexane 

methylcyclohexane 

dimethylcylcopentane 

ethylcyclopentane 

Alkenes, cyclic 

cyclohexene -6th o 

Aromatic hydrocarbons 

benzene 

toluene 

ethylbenzene 

xylene 

Aldehydes and ketones 

acetone 

2-pentanone 

unidentified aldehyde 

0.71 0.60 0.55 0.47 
0.40 0.40 0.41 0.40 

0.12 0.13 0.21 0.23 

0.04 0.05 0.09 0.12 

0.07 0.06 
0.36 0.30 
0.06 0.06 

I 0.14 0.08 

0.19 0.16 
1.81 1.52 

0.12 0.12 

0.22 0.18 0.24 0.20 

20.2 15.7 84.7 66.1 

0.18 0.17 3.38 3.10 
0.15 0.16 
0.08 0.09 

1.48 0.86 

0.31 0.27 

.0.8 6.25 

0.20 0.17 0.55 0.45 
0.08 0.08 0.79 0.77 

0.21 0.20 
0.34 0.37 

0.45 0.57 0.05 0.07 
0.16 0.23 

0.04 0.07 
0.11 0.18 0.08 0.14 

0.31 0.21 
0.51 0.43 

0.15 0.13 2.24 1.88 
0.35 0.34 

0.10 0.10 

lo.15 0.12 

40.2 31.4 55.3 43.1 
0.53 0.5C 6.90 6.35 
0.28 0.3C 0.29 0.31 

0.11 cl.12 

18.3 10.6 12.3 7.14 

0.0 
1 
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Table 23. (can't.) 

TOTAL M)SE (ESH ) 210 480 720 

TYPE OF COMPOUND 
Fcrmula 

mole 9 
xlo-‘O x10- 

mole 9 
xlo-‘O’ x10-l 

-- 

0.66 0.47 
0.28 0.34 

19.6 14.5 

0.81 0.72 

1.02 0.89 
2.05 1.80 
0.09 0.09 
0.07 0.09 

methylethylketone C,HBO 

acetophenone '--eHe0 

Esters 

methylacetate CsH,Oz 1.14 0.85 

ethylformate C,H,O, 3.68 2.72 
isopropylformate CdJJ, 
n-propylformate C,H,O, 

methylpropionate C,H,O, 
methyl n-butanoate GH, 002 
methylbenzoate Lb% 
methyl P-ethyl hexanoate Lb 00, 

@@ols, ethers and related compounds 
methanol CH.0 0.54 0.17 
ethanol C, H, 0 17.0 7.8 
isopropanel C, He 0 2.32 1.39 
methylethylether c, Ho 0 9.27 5.56 
furan L rt 0 0.18 0.12 1.33 0.91 
alcohol, unidentif -,H,'J 
P-methylfuran ,860 0.33 0.27 
2-methyl-1,3-dioxolane -e",O, 
1-pentanol MS", ~0 0.07 0.06 1.39 1.23 

sulfur containing compounds 

carbonylsulfide cos 15.9 9.53 64.3 38.5 2.94 1.77 
dimethylsulfide -2 Hb s 1.06 0.65 14.3 8.7 30.0 18.6 
dimethyldisulfide '2 H, % 0.06 0.06 1.08 1.01 0.07 0.0 
carbondisalfide 4 1.39 1.06 0.31 0.2 

methylethylsulfide -3bS 1.00 0.77 
thiophene LH,S 0.09 0.08 
methylthioacetate C,H,OS 0.30 0.27 13.3 12.0 
propanethiol ptbs 5.43 4.1 

Role 9‘ 
tlo-‘O x10-, 

mole 9 
x10-‘@ x10-a 

1.84 1.36 
1.30 0.97 

0.21 0.18 

0.07 0.11 

3.45 1.10 
6.28 2.89 

0.6’ 0.42 
0.53 0.38 
0.24 0.20 
0.15 !I.13 

5.33 3.31 
1.71 1.61 
1.72 1.31 

1.67 1.27 
0.13 0.11 
0.42 0.38 
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Table 23. (can't.) 

TOTAL DOSE (. ESH) 

TYPE OF COMPOUND 

Z-methyl-2-butanethiol (or E-pentane 
thiol) 

methyl n-propylsulfide 

methylthiophene 

methyl n-propyldisulfide 

Nitrogen containing compounds 

propionitrile 

isopropylnitrile 

methylcinnoline 

Halogen containing compounds 

chloromethane 

chloroethane 

trichlorotrifluoroethane 

tetrachloroethylene 

vinylchloride 

dichloromethane 

2-chlorooropane 

1,1,1,3,3-pentafluoro-2.2,3-trichlorc 
prooane 

1.2 dichloroethane 

dichlorobutane 

chlorobenzene 

'onnula nole 9 nolf 
Klo-’ D X10-l 

9 
rlO-1° x10-l 

:, HI z S 

:. HI I; S 0.09 0.08 
:5 H 65 0.12 0.09 
:a H, c 52 0.07 0.08 

1, Hs N 0.34 0.15 0.21 0.11 
:s H7 N 0.06 0.04 
:9 H, Nz 0.10 0.15 

:Hg Cl 

:,H5Cl 

:2Clz F, 

:z Cl, 

:‘H? Cl 

:H2C12 

0.39 0.20 1.33 0.66 
0.24 0.15 
0.32 0.05 
0.02 0.05 

41.5 20.7 
1.17 OJ5 
0.11 021 0.05 0.10 

4.66 2.89 

:: H&l 

3C13F5 

2H.Clz 

*HaClr 

sH:Cl 

210 480 
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Table 24. Ultraviolet irradiation of 5208/T300 laminates. GC/MS analysis of 
evolved products by using OV-101 column. 
laminate sample, 56.5 cm-. 

Surface area of exposed 

TOTAL DOSE (ESH) - 245 480 720* 

TYPE OF COMPOUND 
(Fcrmulal 

Alkanes, open chain 

2-methylpropane 

n-pentane 

2-methylbutane 

alkane, unidentified 

n-hexane 

branched alkane 

branched alkane 

n-heptane 

2-methylheptane 

3-methylheptane 

branched alkane 

n-octane 

branched alkane 

n-nonane 

n-decane 

n-undecane 

n-dodecane 

n-tridecane 

n-tetradecane 

n-pentadecane 

n-hexadecane 

Alkenes, open chain 

butene or E-methylpropene 

l-pentene 

I-hexane or P-methyl-I-pentene 

alkene, unidentified 

alkene, unidentified 

C41c 
C5H12 

Cs HI z 

C>‘+I z 

C6 % * ’ 2.61 2.25 

C,‘-‘I LI 
C7Pl” 1.05 1.05 
C7H16 4.58 4.58 
CeHle 

CeHle 

CeHls 1.13 1.28 

CaHl B 2.93 3.34 
Cs Hz o 

Cs Hz o 1.3& 1.77 
C1oH27 0.25 0.40 
Cl1 Hz\ 1.50 2.35 
1^12Hz~ 0.25 0.43 
~IPHZE 0.42 0.77 
J~tiHpa 0.60 1.18 

-1sH32 3.90 1.91 
-16H3b 3.82 1.G4 

-r Hs 10.2 5.75 
AHI o 1.53 1.07 
AHIZ 0.84 0.70 
,6H12 

nole 9 
c1o-zo x10-l -- 

0.81 0.50 
12.1 19.1 
2.88 2.47 
1.89 1.89 
3.4 13.4 

3.68 4.19 
6.53 7.46 
0.51 0.66 
2.74 3.50 
1.14 1.62 
2.10 3.27 
0.40 0.66 
0.70 1.29 
0.40 0.79 
0.12 0.25 
0.42 0.95 

6.67 4.67 

ole 9 
lo-lo x10-1 

960 

nole 9 
K1o-xo x10-e 

106 73 
6.59 4.74 

25.3 21.8 
5.75 4.94 
4.04 4.04 

23.3 23.3 
0.79 0.90 
4.90 5.60 

8.44 9.61 
1.01 1.30 
3.49 4.47 
0.86 1.22 
0.93 1.46 
9.16 ‘II.27 
0.36 0.66 
0.41 0.81 

0.43 0.97 

1.50 0.66 
11.9 8.36 

0.25 0.21 

0.42 0.48 

l Sample,analyzed using a Porapak column to confin the identity of components detected by GC only 
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Tzible 24. (can't.) 

TOTAL DOSE ( ESH) 

TYPE OF COMPOUND 

Alkanes, cyclic 

methylcyclopentane 

cyclohexane 

methylcyclohexane 

Alkenes. cyclic 

cyclopentane 

cyclohexene 

Aromatic hydrocarbons 

benzene 

toluene 

ethylbenzene 

xylene 

Aldehydes and ketones 

acetone 

Esters 

diethylphthalate 

di-n-butylphthalate 

Alcohols, ethers and related canpoun 

2-methylfuran 

paraldehyde 

Sulfur containing compounds 

carbonyl sulfide 

carbon disulfide 

diiethylsulfide 

methylethylsulfide 

thiophene 

methyl n-propyl sulfide 

dimethyldisulfide 

Nitrogen containing compounds 

NONE 

CsHs 

‘%HAo 0.47 0.38 
0.36 0.24 
1.05 0.86 0.40 0.33 

-.- 

C6H6 123 332 ‘98 623 675 526 

Cdie 6.35 5.84 6.5 15.2 18.5 17.1 

Cdl o 0.65 0.69 3.18 3.37 0.25 0.26 

CSHAO 4.13 4.36 13.8 23.8 2.28 2.42 

04 60.4 

1.36 3.02 

C16H22( 

109 121 

0.89 1.98 
0.60 1.68 

0.93 2.06 
6.90 19.2 

C5H60 0.56 0.46 

LHAZOZ 6.6 21.9 8.3 22.0 

LOS 

csz 
:2H6S 
LaHaS 
LH*S 

:rHl OS 

12H6s2 

5.51 3.31 

5.0 15.5 
1.21 0.92 
0.51 0.43 
0.65 0.59 
0.36 0.81 

1.28 
2.78 ~ 

0.67 0.66 

0.82 0.63 1.32 1.0 
6.67 4.14 LO.9 6.79 
0.77 0.59 0.63 0.48 
1.55 1.30 1.61 1.35 

960 

mole 9 
xlo-‘O x10-a 

2.8 2.39 
8.44 7.08 
1.17 1.15 

-- 
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Table 24. (can't.) 

TOTAL DOSE (ESH ) 

TYPE OF COMPOUND 

Halogen containing compounds 

chloromethane 

chloroethane 

dichloromethane 

trichloromethane 

perfluorotoluene 

wmuli 

i,Cl 

!H5C1 

i2c12 

Xl, 

,FS 

240 

2ole 9 
(10 -lo x10- 

0.79 0.40 

0.22 0.27 

0.18 0.42 

480 720* 960 

iole 9 
(lo-lo x1o-8 

)le 9 
10-O x10- 

mole 9 
x1o-xo x10-0 

0.48 0.31 

1.02 0.87 

0.47 0.56 
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Table 25. Electron irradiation of P17OO/C6000 laminate. W/MS analysis of 
evolved products by using OV-101 coulmn. Height of exposed 

laminate samples, 5.139 (44.5%wt resin). 

TOTAL DOSE (rads) 5x13' r 
I 

TYPE OF COMPOUND 
Formula 

Alkanes, open chain 

P-methylpropane 

n-butane 

n-pentane 

P-methylbutane 

n-hexane 

n-heptane 

branched alkane 

branched alkane 
n-octane 

n-nonane 

n-decane 

n-undecane 

n-dodecane 

n-tridecane 

n-tetradecane 

branched alkane 

branched alkane 

branched alkane 

n-pentadecane 

n-hexadecane 

Alkenes, open chain 

1-pentene 

1-hexene C,H, 2 

1-heptene &'-'I 9 
2,4.4-trimethyl-1-pentene 

Alkanes, cyclic 

ethylcyclopropane 

cyclohexane 

methylcyclohexane 

alkylcycloalkane. unidentif 

CflH, 6 

Cs Hlu 

C6 HI J 

ale 9 
10-10 x10-l 

826 2.47 

,65 2.12 

.49 1.79 

1.03 0.60 

.99 0.85 0.43 0.37 

.41 1.41 1.16 1.16 

.14 1.30 

.83 1.06 

.29 0.41 

.28 2.00 

.29 0.49 

.83 1.54 

0.53 0.61 

0.15 0.22 

0.52 0.88 

0.40 0.79 

.44 1.01 
I.57 0.48 

I.87 0.85 

I.80 0.90 

1.96 0.67 

1.44 0.37 

loe 

iole g- 
.lo-‘O xl0 a 
- 

I.19 0.21 

1.50 0.42 

- 
5 

mo 
xl 

I 
1 
4 

1 

1 
0 

2 

1 
0 
0 
1 
1 
1 
1 

0 
0 
0 
1 

1 
1 

t 

x10’ 

le 9 
o-‘O x10-’ 

.lO 0.64 

.43 3.19 

.39 1.39 

.04 1.04 

.94 1.07 

.49 2.84 

.22 1.57 

'.76 1.08 

.80 1.25 

.15 1.95 

.43 2.64 

.74 3.45 

.12 2.07 

.12 0.24 

.32 0.69 

.69 1.46 

.78 4.02 

.51 1.27 

.43 0.42 

3.93 0.7E 

1.45 1.42 

0.4E 

105 

mole 9 
xlo-‘o x10-. 

3.38 1.96 

5.51 3.97 

2.42 2.09 

0.57 0.57 

0.37 0.43 

0.35 0.63 

1.33 2.66 

1.70 3.62 

1.52 3.46 

1.31 0.91 
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Table 25. (can't.) 

TOTAL DOSE (rads) 

TYPE OF COMPOUND 

Alkenes. cyclic 

cyclohexene 

Aromatic hydrocarbons 

Benzene 

Toluene 

Ethylbenzene 

Xylene 

Aldehydes and ketones 

cyclohexanone 

acetone 

methylisopropylketone 

Fcrmula 

CbHl o 

c6l-b 

C? tb 

Ce HI a 
Ce HI o 

C6 10 H 

Esters 

diethylphthalate -1zH1uO 

di-n-butylphthalate -15H220 

Alcohols, ethers and related compounds 
Alcohol, unidentif 
Oxygen compound, unidentif 

Oxygen compound, unidentif 

Sulfur containing compounds 

Carbonyl sulfide 

Nitrogen containing compounds 

Unidentified 

Halocarbons and halosilanes 

chloromethane 

dichloromethane 

chlorobenzene 

perfluorotoluene 

chloroethane 

cos 

CH3C1 

CH3C13 

C3HsCl 

C7Fs 

C3H3Cl 

5 

iii’ 
x’ 

1: 

4. 
0. 
9. 
4t - 

1. 

- 

* 

2 

x10' 10’ 5x15' 10’ 

ale g mole 9 mole '9 mole 
lo-” x10-’ x10-1" x10-3 x10-*a x10-' xlo-'o xl;-' 

g.3 10.9 5.50 4.51 

.59 3.58 7.14 5.57 28.2 22.0 30.7 24.0 

.37 0.34 0.38 0.35 1.28 1.18 0.85 0.78 
43 10.0 6.93 7.35 8.47 8.98 1.87 1.80 

I.8 43.3 28.1 29.8 ‘41.3 43.0 18.4 17.6 

76 1.73 2.27 2.23 9.02 8.84 8.28 8.13 
45.3 26.3 43.1 25.1 
0.82 0.71 

5 

) 0.73 

2.01 1.01 0.20 0.10 
2.81 2.39 
0.18 0.30 0.36 0.40 

0.17 0.41 

8.19 9.81 

-I---- 
6.36 7.13 5.69 6.36 

(8.50 5.45 
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Table 26. Electron irradiation of 934/T300 laminate. GC/MS analysis of 
evolved products by usinq OV-101 column. 
laminate samples, 5.839 (45.1%wt resin). 

Weight of exposed 

TOTAL DOSE (t-ads) 

TYPF OF COMPOUND 
Fcrmulr 

Alkanes, open chain 

2-methylpropane 

n-butane 

branched alkane 

n-pentane 

n-hexane 

E-methylpentane 

3-methylpentane 

n-hexane 

branched alkane 

n-heptane 

n-octane 

branched alkane 

n-nonane 

branched alkane 

n-decane 

branched alkane 

n-undecane 

n-dodecane 

branched alkane 

n-tridecane 

n-tetradecane 

n-pentadecane 

branched alkane 

n-hexadecane 

Alkenes, open chain 

propeie 

Alkanes, cyclic 

cyclopropane (tentative) 

cyclohexane 

5x10’ 

iole 9 
110 -lo x10- 

4.02 5.71 
2.04 0.94 

0.38 0.54 

0.6 18.1 
0.23 0.42 

1.00 1.71 

9.44 18.7 3.76 1.50 

0.49 1.11 
3.67 8.31 3.29 0.66 

cl.88 0.37 

.95 0.40 

.~ 

OB 

1ole 9 
tlo-‘O x10-l 

- - 

5x100 

'ale 9 
10 -10 xlo-' 

m 
g x 

1. 
2. 
1. 

1. 

0. 

0. 

1. 
0. 
1. 
0. 

0. 

0. 

0. 
0. 
0. 

3. 

3. 

0. 

60 0.93 

07 1.20 
49 1.07 
57 1.13 

56 0.47 

37 0.31 
42 1.19 
78 0.78 
47 1.47 

60 0.69 

25 0.32 

12 0.17 

11 0.21 0.24 0.44 
21 0.43 0.22 0.43 
20 0.44 0.49 1.04 

43 0.97 

69 0.29 

.36 0.30 0.43 0.36 

- 

109 

mole 1 g 
x10-10 x10-a 

0.07 0.06 
‘3.38 0.33 
0.75 0.65 

0.84 0.84 
0.80 0.91 
0.68 0.78 
0.63 0.80 
0.21 0.27 

0.26 0.40 
0.25 0.43 

0.41 0.94 
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Table 26. (can't.) 

TOTAL DOSE (rack) 5x10’ 

.::_;,I:,_,_ 
Y 

Aromatic hydrocarbons 

Benzene 

Aldehydes and ketones 

acetone 

Esters 

diethylphthalate 

di-n-butylphthalate 

Alcohols, ethers and related compounds 

paraldehyde (or isomer) C,HI 20: 

Sulfur containing compounds 

NONE 

Nitrogen containing compounds 

unidentified 

Halogen containing compounds 

dimethyldifluorosilane 

trimethylfluorosilane 

perfluorotoluene 

C2HqSiF 

C3HqSlF 

C7Fe 

1.44 1.23 

l( F m 
' x 

I” I 5x108 

ole 9 mole 9 
lo-'0 x10-q x10-'0 x10-l =I= 
----A Z.77 1.61 

52 0.41 

39 3.08 0.86 1.92 
.15 0.43 3.11 8.66 

,51 7.28 

23 0.20 
37 0.34 

10’ 

mole 9 
x10-10 x10-’ 

0.34 0.26 

2.51 

3.24 0.56 
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Table 27. Electron irradiation of 5208/T300 laminate. GS/MS analysis of 
evolved products by using OV-101 column. 
laminate samples, 4.479 (32.8%-wt resin). 

Height of exposed 

TOTAL DOSE (rads) 5x10' (*) lo8 (**) 

mole 
TYPF OF COMPOUND 

Fcrmula xlo-~~ 9 mole 9 
xlo-e x10-1 O x10-1 

Alkanes, open chain 

n-pentane 

Alkane, unidentif. 

C5H1 z 

Alkenes, open chain 

butene or P-methylpropene 

Alkanes, cyclic 

NONE 

Alkenes, cyclic 

NONE 

Aromatic hydrocarbons ---- 
benzene 

toluene 

Aldehydes and ketones -__ 
NONE 

---- 

Esters 

NONE 

Alcohols, ethers and related compound: 

1,4-dioxane 
____---__.- 

Sulfur containing compounds 

NONE 

Nitrogen containing compounds 

unidentified 

fluoro-nitrogen compd, unidentif. 

- 
I 5x108 

Die 9 
lo-lo x10’ 

3.60 

109 

mole 9 
xlo-‘O x10-a 

7.43 5.36 

2.57 

5.47 4.26 

2.82 2.60 

0.93 0.83 

*only traces of gas detected in this sample 

**leaking valve, gas sample was not analyzed 
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Table 27. (can't.) 

TOTAL DOSE (rads) 

TYPF OF COMPOUND 

Halogen containing compounds 

chlorotrifluoromethane 

trifluoromethane 

fluorocarbons, unidentif 

dimethyldifluorosilane 

1-H-perfluorohexane 

dichloromethane 

tetrafluoroethane 

trimethylfluorosilane 

chloroethane 

t-mu12 

IF, 

F3 

%FzS 

4F13 

ZClZ 

i*F* 

isFSi 

9ZC1 

ole 9 
10 -Ia x10- 

1 
.3 

nole 9 
Klo-‘O x10-0 

3le g- 
lo-lo x10 

‘.97 3.09 

.80 3.36 
28.2 

.20 6.91 
1.16 0.53 
.88 4.15 

mole 9 
x10-10 x10-a 

41.2 
59.6 57.1 

3.3’: 12.6 

12.3 12.5 
2.60 2.40 0 

11.4 7.28 
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to the formation of cyclohexa-1,3-diene, which is known to rearrange under the 

effect of UV light to form hexa-1,3,5-triene13 / 0 \ - A/v 
Either this reaction or a direct cleavage of cyclohexadienyl radicals followed 

by recombination of hydrocarbon fragments is probably responsible for the forma- 

tion of linear alkenes and alkanes. 

Aromatic compounds identified by GC/MS include benzene, toluene, ethylben- 

zene, xylene and several more in the case of ultraviolet irradiated polysulfone. 

Their formation can be explained by free radical mechanisms, some of which have 

been discussed previously for Fiberite 705/60. Xylene must be present as resi- 

dual solvent in P1700, because the amount of xylene detected from ultraviolet 

and electron irradiated P1700 samples is excessively high. 

Among the compounds containing carbonyl groups, acetone is the most impor- 

tant. A possible mechanism for acetone formation was suggested previously for 

Fiberite 705/60. From epoxy type systems, evolution of acetone cannot be read- 

ily explained. Acetone formation does not show a clear dependence on exposure 

time, indicating possible residual solvent or vapor phase reactions. 

Several alcohols and ethers have been identified, mainly from ultraviolet 

exposed samples. Particularly interesting was the identification of paraldehyde, 

the trimer of acetaldehyde, from ultraviolet irradiated 5208 and electron irra- 

diated 934. Acetaldehyde was never detected, although it was certainly formed, 

probably because it undergoes decomposition into CO and CH,,. 

73 
R.J. DeKock, N.G. Minaard and E. Habinga: The Photochemical Reactions of 
1,3 Cyclohexadiene and 4-Phellandrene, Rec. Trav. Chem. 2, 922 (1960). 

84 



A variety of sulfur compounds have been identified from ultraviolet irradia- 

ted samples, such as carbonyl sulfide (COS), carbon disulfide (C'&), dimethyl- 

sulfide (CH3-S-CH3), dimethyldisulfide (CH3-S-S-CH3) and methylethylsulfide 

(CH3-S-C2H5). Formation of small quantities of COS was previously reported for 

electron irradiation', y-irradiation', and UV irradiation4 of polysulfone in 

vacuum. These sulfur compounds must arise from secondary reactions of Son. 

SO2 must act as an oxidant, since the sulfur compounds identified by GC/MS have 

a lower oxidation number. It was mentioned earlier that SO2 can undergo photo- 

chemical and radiochemical decomposition into SO and O2 and that SO can undergo 

disproportionation to SOz and elemental sulfur6: 

2so2 - 2so + 02 

2 so - SO2 + s 

Elemental sulfur may react with CO to form COS: CO + S - COS 

CS2 can form from COS by the following reaction14: 2cos - cs2 + co2 

COS may also undergo photolytic decomposition into CO and elemental sulfur". 

Other reaction mechanisms could be proposed for the formation of thiols and 

thioethers, however, these reactions are of limited interest because the for- 

mation of these gases is negligible. 

The nearly total absence of nitrogen containing compounds in the gas mix- 

tures is quite remarkable. Nitrogen is present in Fiberite 934 and Narmco 5208 

(4,4'-diaminodiphenyl sulfone (DDS) is used as hardener for these resins). Only 

in the case of UV exposed Fiberite 934 traces of nitriles have been identified. 

Ammonia or amines were not detected. This indicates good radiation stability 

for the portion of the molecule linking DDS to the epoxy system. 

A variety of fluorocarbons, chlorocarbons and fluorosilanes have been iden- 

tified. Most of these are freon type gases and constituents of mold releases 

used in composite fabrication. The only compound of interest in the group is 

chlorobenzene, detected in the ultraviolet and electron irradiation of P1700. 

Chlorobenzene arose from chlorophenyl end-groups present in P1700 (which is 

"J.R. Parkinson and H.H. Neville: The Thermal Decomposition of Carbonyl 
Sulphide, J. Chem. Sot. 1951, 1230. 

"S. Oae, Organic Chemistry of Sulfur, Plenum Press, N.Y., 1977, 39. 
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prepared from 4;4'-dichlorodiphenylsulfone)'. Formation of chlorobenzene is an 

indirect proof of the occurrence of chain cleavage at C-S bonds: 

Likewise, benzene formation results from chain cleavage reactions taking place 

at random points in the polymer chain at both ends of a benzene ring. Similar 

curves are obtained for benzene and chlorobenzene formation from ultraviolet and 

electron irradiated P1700 (Figure 28 and 29). 

4.2.2. Mechanic& and 0p;ticat Ev&ua;tion 

Compressive and flexural strength measurements have been conducted on con- 

trol samples, ultraviolet exposed samples (960 ESH) and electron exposed samples 

(10' rads) of Pl7OO/C6000, Fiberite 934/T300 and Narmco 5208/T300. Compressive 

strengths for these materials are presented in Table 28. These data are presented 

graphically in Figures 30, 31 and 32, where the probability of failure vs. the 

compressive strength is shown. 

As can be seen in Figure 30 for the 934/T300 material, there is no statisti- 

cal evidence to indicate that the UV or electron exposed samples are different 

in strength from the control samples. Figure 31 presents the data obtained for 

P17OO/C6000. The control group and the electron exposed group show little dif- 

ference, but there may well be a deleterious effect of UV exposure on this 

material. Figure 32 shows negligible variation in 5208/T300 exposed to UV or 

electrons. 

Flexural test results are given in Table 29. Again, these data were plotted 

relating the probability of failure to the flexural strength (see Figures 33, 

34 and 35). The behavior is essentially the same as that shown for compressive 

strength. The 934/T300 and 5208/T300 materials show no significant variation in 

strength. There may be flexural strength degradation in UV exposed P17OO/C6000 

(noted previously in Figure 31 for compressive strength.). 

SEM examination of UV exposed Pl7gO/6000 has been conducted in an attempt 

to identify possible radiation induced-surface damage. Surface defects showing 
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Figure 28. Benzene and chlorobenzene formation during 
ultraviolet irradiation of P17OO/C6000. 
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Figure 29. Benzene and Chlorobenzene formation during 
electron irradiation of P17OO/C6000. 
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Table 28 

COMPRESSIVE STRENGTH 

- 

Material 

934/T300 

P17OO/C6000 

5208/T300 

Exposure 

Control 
UV Exposed, 960 ESH 
Electron Exposed, 10' rads 

Control 
UV Exposed, 960 ESH 
Electron Exposed, 10' rads 

Control 
UV Exposed, 960 ESH 
Electron Exposed, 10' rads 

Strength, f1Pa 
(Avg. of 3 Spec.) 

505 
627 
573 

365 
253 
418 

480 
439 
532 

Table 29 

FLEXURAL STRENGTH 

Material 

934/T300 

Exposure 

Control 
UV Exposed, 960 ESH 
Electron Exposed, 10' rads 

Strength, MPa 
(Avg. of 3 Spec.) 

1370 
1580 
1560 

P17OO/C6000 Control 1100 
UV Exposed, 960 ESH 710 
Electron Exposed, 10' rads 850 

5208/T300 Control 1370 
UV Exposed, 960 ESH 2000 
Electron Exposed, 10' rads 2020 
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Figure 30. Compressive Strength Distribution for 934/T300 
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Figure 31. Compressive Strength Distribution for P17OO/C6000 
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Figure 32. Compressive Strength Distribution for 5208/T300 
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Figure 33. Flexural Strength Distribution for 934/T300 
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Figure 34. Flexural Strength Distribution for P17OO/C6000 
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Figure 35. Flexural Strength Distribution for 5208/T300 
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exposed graphite fibers appear to be somewhat more pronounced in the irradiated 

sample relative to the control (Figures 36 and 37). 

4.2.3. Pynarnk MechanicaL An.aLy& 06 E.&&on Exposed Sump&% 

The dynamic mechanical behavior of Fiberite 934/T300 and Narmco 5208/T300 

has been measured in the sample transverse direction. The elastic modulus and 

the loss modulus of electron irradiated samples (IO' rads) and control samples 

are compared in Figures 38, 39, 40 and 41, for 934/T300 and 5208/T300 respec- 

tively. The elastic modulus of the two epoxy systems is virtually unchanged 

over a wide temperature range after irradiation, but the point of inflection 

of the modulus curve for 5208/T300 occurs at slightly higher temperature, 

indicating a higher c1 transition due to radiation induced cross-linking. 

The same phenomenon can be observed by comparing the temperatures at which 

maxima occur in the loss modulus plots. The loss modulus curves show that 

both 934/T300 and 5208/T300 have high temperature (~1) and low temperature 

(6) transitions. The temperature at which these transitions occur (as measured 

by the temperature of the transition peak) appears to change as a result of 

electron irradiation, but the direction of the change is not the same for the 

two resins. According to the loss modulus plots, irradiation increases the a 

peak temperature in the case of 5208/T300, but decreases: it for 934/T300. The 

precision of the technique is adequate to detect changes of this magnitude, 

but because of some variability in the samples used, additional measurements 

will be required before drawing definite conclusions. The increase in the CL 

transition temperature of Narmco 5208 is probably related to evolution of hydro- 

gen which was particularly high at 10' rads, as can be seen from Table 20 and 

Figure 22. (Polymers which are known to cross-link under the effect of radiation 

such as polystyrene produce almost exclusively hydrogen as a by-product). 

DMA studies of P17OO/C6000 and epoxy samples in the fiber direction have 

not been completed. 
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Figure 36. SEM Micrographs (50X) of P17OO/C6000 laminate. 
Left sample, control. Right sample, UV irradiated (960 ESH) 



Figure 37. SEM Micrographs (500X) of P17OO/C6000 laminate. 
Left sample, control. Right sample, UV irradiated (960 ESH) 
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- Control 

---- Irradiated 

-160 0 80 
TEMPERATURE OC 

160 

Figure 39. Effect of electron irradiation (IO' rads) on the 
loss modulus of Fiberite 934/T300. 
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Figure 40. Effect of electron irradiation (10' rads) on the 
elastic modulus of Narmco 5208/T300. 
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4.3 CONCLUSIONS AND RECOMMENDATIONS 

The composite materials evaluated have shown good electron radiation stability 

as indicated by low G yaluesfor gas formation and no evidence of machanical 

property changes up to radiation doses of 10' rads. The same composites have 

shown poor stability to ultraviolet radiation in terms of quantum yields for gas 

formation. In terms of mechanical properties, no measurable chanqes have been 

detected up to 960 ESH, with the possible exception of P17OO/C6000. Because of 

the high aromaticity of the matrix resins investigated, ultraviolet radiation 

is totally absorbed at the surface and a "skin effect" is produced. 

Quantitative analysis of volatile products evolved during radiation expo- 

sure has been found to be very useful for determining "molecular" radiation 

stability. Gas formation in irradiated polymers reflects the occurence of 

chain scission and cross-linking reactions, which are ultimately responsible 

for mechanical failure. Plots of main gas formation versus exposure doses 

generally follow well-defined curves that could be simply described mathemati- 

cally and utilized for a kinetic model of the degradation process. The gas 

analysis technique is very sensitive and reveals changes occurring at the mole- 

cular level long before these become apparent in terms of physical property 

changes. The method is particularly useful for the study of thermosets, which 

because of their insolubility cannot be analyzed by conventional polymer charac- 

terization methods. We have identified several free radical mechanisms of matrix 

degradation and have compared the radiation resistance of different matrices on 

the basis of their rates of gas evolution. Correlations between molecular 

effects of degradation (gas formation) and gross effects (changes in mechanical 

properties) have not been established because the radiation doses employed 

were insufficient to produce measurable physical property changes in the laminates 

tested. An increase in the Tg of 5208/T300 at 10' rads appears to be related 

to hydrogen formation , which is particularly high at this dose. 

Of particular concern was the identification of diethyl and di-n-butyl 

phthalate among the by-products obtained. The presence of these compounds 

was most likely due to insufficient cleaning of prepregger's resin mixing 

vat. It is doubtful that this trace quantity of plasticizer could have a 

major effect on the degradation of the epoxy resin system. The fact that it 

was found emphasizes the need for cleanliness by the prepregger. 
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Dose rate effects have not been investigated and should be considered 

in future work. High-energy radiation exposure tests at dose rates sub- 

stantially lower than the ones employed in this work would be very expensive 

and time consuming, if total doses in excess of 109 rads are to be attained. 

Again, gas analysis can be very useful for a study of dose rate effects, 

since the method is very sensitive and fluences as low as 5 x lo7 rads would 

be sufficient to evaluate gas formation as a function of energy flux. 
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APPENDIX 

REFLECTANCE CURVES 
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